# 2022 Indiana Commercial & Industrial Portfolio EM&V Report Volume I of II

Prepared for: Indiana Michigan Power

April 2023

Prepared by:



## ADM Associates, Inc.

3239 Ramos Circle Sacramento, CA 95827 916.363.8383

## Table of Contents

| 1. Intr | roduction                                     | 1  |
|---------|-----------------------------------------------|----|
| 1.1.    | Summary of Data Collection                    | 1  |
| 1.2.    | Impact Evaluation Findings                    | 1  |
| 1.3.    | Cost Effectiveness Evaluation Findings        | 4  |
| 1.4.    | Evaluation Findings and Recommendations       | 4  |
| 1.5.    | Organization of Report                        | 5  |
| 2. Wo   | ork Prescriptive                              | 7  |
| 2.1.    | Program Description                           | 7  |
| 2.2.    | Data Collection                               | 7  |
| 2.3.    | Estimation of Ex Post Gross Savings           | 9  |
| 2.4.    | Estimation of Ex Post Net Savings             | 14 |
| 2.5.    | Process Evaluation                            | 19 |
| 2.6.    | Findings and Recommendations                  | 25 |
| 3. Wo   | ork Custom                                    |    |
| 3.1.    | Program Description                           | 27 |
| 3.2.    | Data Collection                               | 27 |
| 3.3.    | Estimation of Ex Post Gross Savings           |    |
| 3.4.    | Estimation of Ex Post Net Savings             | 31 |
| 3.5.    | Process Evaluation                            | 32 |
| 3.6.    | Findings and Recommendations                  | 32 |
| 4. Pub  | blic Efficient Streetlighting                 |    |
| 4.1.    | Program Description                           |    |
| 4.2.    | Data Collection                               |    |
| 4.3.    | Estimation of Ex Post Gross Savings           |    |
| 4.4.    | Estimation of Ex Post Net Savings             | 34 |
| 5. Cos  | st Effectiveness Evaluation                   |    |
| 5.1.    | PY2022 Cost Effectiveness Evaluation          |    |
| 5.2.    | PY2021 – PY2022 Cost Effectiveness Evaluation |    |

| Table | of | Tal  | 1.00 |
|-------|----|------|------|
| Table | 01 | 1 a0 | les  |

| Table 1-1 Number of Sampled Projects                                             | 1  |
|----------------------------------------------------------------------------------|----|
| Table 1-2 Summary of Survey Data Collection                                      | 1  |
| Table 1-3 Savings-Related Terminology                                            | 1  |
| Table 1-4 Components of Impact Evaluation Accounted for in Savings Variables     | 3  |
| Table 1-5 Summary of Energy Savings – PY2022                                     |    |
| Table 1-6 Summary of Peak Demand Impacts – PY2022                                | 4  |
| Table 1-7 Summary of PY2022 Benefit-Cost Ratios                                  | 4  |
| Table 2-1 Population Statistics Used for Work Prescriptive Sample Design         | 8  |
| Table 2-2 Summary of Work Prescriptive and Work Custom Data Collection           | 9  |
| Table 2-3 Staff Interview Summary                                                | 9  |
| Table 2-4 Breakdown of Sampled Prescriptive Measures                             | 11 |
| Table 2-5 Work Prescriptive Project-Level Ex Ante and Ex Post kWh Savings        | 12 |
| Table 2-6 Ex Post Annual Gross kWh                                               | 14 |
| Table 2-7 Ex Post Peak kW Reduction                                              | 14 |
| Table 2-8 Free Ridership Scoring                                                 | 17 |
| Table 2-9 Ex Post Net kWh and kW Savings                                         | 19 |
| Table 3-1 Population Statistics Used for Work Custom Sample Design               | 27 |
| Table 3-2 Breakdown of Sampled Custom Measures                                   | 28 |
| Table 3-3 Work Custom Project-Level Ex Ante and Ex Post kWh Savings              | 29 |
| Table 3-4 Ex Post Annual Gross kWh                                               | 31 |
| Table 3-5 Ex Post Peak kW                                                        | 31 |
| Table 3-6 Ex Post Net kWh and kW Savings                                         | 32 |
| Table 4-1 Ex Post Annual Gross kWh                                               | 34 |
| Table 4-2 Ex Post Net kWh and kW Savings                                         | 35 |
| Table 5-1 Summary of Benefits and Costs Included in each Cost Effectiveness Test | 36 |
| Table 5-2 Work Prescriptive Program Cost Test Inputs and Results                 | 37 |
| Table 5-3 Work Custom Program Cost Test Inputs and Results                       | 37 |
| Table 5-4 Public Efficient Streetlighting Program Cost Test Inputs and Results   | 37 |
| Table 5-5 Summary of PY2021 - PY2022 Benefit-Cost Ratios                         | 38 |

| Table 5-6 PY2021 - PY2022 Work Prescriptive Program Cost Test Inputs and Results              |
|-----------------------------------------------------------------------------------------------|
| Table 5-7 PY2021 - PY2022 Work Custom Program Cost Test Inputs and Results       38           |
| Table 5-8 PY2021 - PY2022 Public Efficient Streetlighting Program Cost Test Inputs and Result |
|                                                                                               |

## Table of Figures

| Figure 2-1 Weekly and Cumulative Ex Ante Savings             | . 22 |
|--------------------------------------------------------------|------|
| Figure 2-2 Initial Source of Program Awareness               | . 23 |
| Figure 2-3 Application Assistance and Equipment Installation | . 23 |
| Figure 2-4 Acceptability of the Application Process          | . 24 |
| Figure 2-5 Program Satisfaction                              | . 25 |

# 1. Introduction

Under contract with the Indiana Michigan Power (I&M), ADM Associates, Inc., (ADM) performed evaluation, measurement, and verification (EM&V) activities that confirmed the energy savings (kWh) and demand reduction (kW) realized through the energy efficiency programs that I&M implemented in Indiana during the during January 2022 through December 2022 (PY2022).

This chapter provides a summary of evaluation findings for the C&I program portfolio and presents information regarding the organization of the report.

#### 1.1. Summary of Data Collection

Table 1-1 summarizes the number of verification sites reviewed for the ex post gross analysis.

| Program                         | Number of Sampled<br>Projects |
|---------------------------------|-------------------------------|
| Work Prescriptive               | 23                            |
| Work Custom                     | 20                            |
| Public Efficient Streetlighting | Census                        |

Table 1-1 Number of Sampled Projects

Surveys were conducted to collect data on the program's impact on participants' decisions to install efficient equipment, as well as their feedback on the program. Table 1-2 summarizes the survey data collection completed for PY2022.

| Mode                                        | Time Frame   | Number of<br>Contacts | Number of<br>Completions |
|---------------------------------------------|--------------|-----------------------|--------------------------|
| Email                                       | October 2022 | 131                   | 13                       |
| Phone follow up to October email invitation | January 2023 | 26                    | 3                        |
| Email                                       | January 2023 | 48                    | 1                        |
| Total                                       |              | 179                   | 17                       |

### 1.2. Impact Evaluation Findings

The savings variables presented in this evaluation report are defined in Table 1-3.

Table 1-3 Savings-Related Terminology

| Variable                  | Definition                                                                                                                                               |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| kWh Savings Goal          | <i>kWh Savings Goal</i> is the energy savings goal cited in the applicable portfolio plan.                                                               |
| Ex Ante Gross kWh Savings | <i>Ex Ante Gross kWh Savings</i> are the annual energy savings reported by I&M and are typically obtained from I&M's DSM/EE Program Scorecard documents. |

| Variable                            | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gross Audited kWh Savings           | <i>Gross Audited kWh Savings</i> are determined by reviewing tracking data presenting for any errors and adjusting <i>Ex Ante Gross kWh Savings</i> accordingly.                                                                                                                                                                                                                                                                                                                                                                 |
| Gross Verified kWh Savings          | <i>Gross Verified kWh Savings</i> are determined by applying an installation rate to the <i>Gross Audited kWh Savings</i> . <sup>1</sup> The installation rate is defined as the ratio of units that were installed (verified) to the number of units reported (claimed).                                                                                                                                                                                                                                                        |
| Ex Post Gross kWh Savings           | <i>Ex Post Gross kWh Savings</i> are the realized annual gross kWh savings reflecting all adjustments made by ADM, without accounting for free ridership or spillover.                                                                                                                                                                                                                                                                                                                                                           |
| Ex Post Net kWh Savings             | <i>Ex Post Net kWh Savings</i> are equal to <i>Ex Post Gross kWh Savings</i> , adjusted to account for free ridership and spillover. <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                |
| Ex Post Net Lifetime kWh<br>Savings | <i>Ex Post Net Lifetime kWh Savings</i> is the <i>Ex Post Net kWh Savings</i> occurring over the course of the applicable measure effective useful life (EUL).                                                                                                                                                                                                                                                                                                                                                                   |
| Gross Realization Rate              | Gross Realization Rate is equal to Ex Post Gross kWh Savings divided by Ex Ante Gross kWh Savings.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Net-to-Gross Ratio                  | <i>Net-to-Gross Ratio</i> is equal to <i>Ex Post Net kWh Savings</i> divided by <i>Ex Post Gross kWh Savings</i> .                                                                                                                                                                                                                                                                                                                                                                                                               |
| Free Rider <sup>3</sup>             | A <i>free rider</i> is a program participant who would have implemented the program measure or practice in the absence of the program. Free riders can be: 1) total, in which the participant's activity would have completely replicated the program measure; 2) partial, in which the participant's activity would have partially replicated the program measure; or 3) deferred, in which the participant's activity would have completely replicated the program measure, but at a future time than the program's timeframe. |

<sup>1</sup> Gross Verified energy impacts will be equal to Gross Audited energy impacts for the Work Prescriptive, Work Custom, and Public Efficient Street Lighting as the in-service rate for these programs is 1.0.

<sup>&</sup>lt;sup>2</sup> ADM conducted a non-participant spillover study in 2021 to estimate non-participant spillover and concluded that there was not any qualifying non-participant spillover. Spillover savings presented in this report reflect participant spillover.

<sup>3</sup> Northeast Energy Efficiency Partnerships (NEEP) EMV Glossary version 2.1. https://neep.org/media/4330

| Variable                                                    | Definition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spillover (Participant and<br>Non-Participant) <sup>4</sup> | <i>Spillover</i> effects are reductions in energy consumption and/or demand caused by the presence of an energy efficiency program, beyond the program-related gross savings of the participants and without financial or technical assistance from the program. There can be participant and/or non-participant spillover. <i>Participant spillover</i> is the additional energy savings that occur when a program participant independently installs energy efficiency measures or applies energy saving practices after having participated in the efficiency program because of the program's influence. <i>Non-participant</i> spillover refers to energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings that occur when a program non-participant installs energy efficiency measures or applies energy savings practices as a result because of a program's influence. |

Based on the definitions presented in Table 1-3, Table 1-4 presents a summary of the components of the impact evaluation that are accounted for in savings variables presented in this report.

| Category       | Tracking<br>Data<br>Review | In-Service<br>Rates | Ex Post<br>Gross<br>Analysis | Net-to-<br>Gross<br>Analysis |
|----------------|----------------------------|---------------------|------------------------------|------------------------------|
| Gross Audited  | $\checkmark$               |                     |                              |                              |
| Gross Verified | $\checkmark$               | $\checkmark$        |                              |                              |
| Ex Post Gross  | $\checkmark$               | $\checkmark$        | $\checkmark$                 |                              |
| Ex Post Net    | $\checkmark$               | $\checkmark$        | $\checkmark$                 | $\checkmark$                 |

Table 1-4 Components of Impact Evaluation Accounted for in Savings Variables

ADM performed EM&V activities for each of the C&I programs offered by I&M during PY2022. Total C&I portfolio ex post gross energy savings are 40,977,758 kWh, while ex post net energy savings are 36,868,964 kWh, as shown in Table 1-5.

| Program Name                        | Ex Ante<br>Annual kWh<br>Savings | Gross<br>Audited kWh<br>Savings | Gross<br>Verified<br>kWh Savings | Ex Post<br>Annual<br>Gross kWh<br>Savings | Gross<br>Realization<br>Rate | Ex Post<br>Annual Net<br>kWh Savings | Net-to-<br>Gross<br>Ratio | Lifetime Net<br>Ex Post kWh<br>Savings |
|-------------------------------------|----------------------------------|---------------------------------|----------------------------------|-------------------------------------------|------------------------------|--------------------------------------|---------------------------|----------------------------------------|
| Work Prescriptive                   | 16,403,055                       | 18,883,903                      | 18,431,394                       | 18,431,394                                | 112%                         | 16,157,685                           | 88%                       | 205,579,377                            |
| Work Custom                         | 17,595,760                       | 16,226,554                      | 16,579,879                       | 16,579,879                                | 94%                          | 14,744,794                           | 89%                       | 183,598,535                            |
| Public Efficient<br>Street Lighting | 5,966,485                        | 5,966,485                       | 5,966,485                        | 5,966,485                                 | 100%                         | 5,966,485                            | 100%                      | 113,388,979                            |
| C&I Portfolio<br>Totals             | 39,965,300                       | 41,076,942                      | 40,977,758                       | 40,977,758                                | 103%                         | 36,868,964                           | 90%                       | 502,566,891                            |

Table 1-5 Summary of Energy Savings – PY2022

Total C&I portfolio ex post gross peak demand savings are 4,847.94 kW, while ex post net peak demand savings are 3,813.59, as shown in Table 1-6.

4 Ibid.

| Program Name                        | Ex Ante<br>Gross kW<br>Savings | Gross<br>Audited<br>kW<br>Savings | Gross<br>Verified<br>kW<br>Savings | Ex Post<br>Gross kW<br>Savings | Gross<br>Realization<br>Rate | Ex Post<br>Net kW<br>Savings | Net-to-<br>Gross Ratio |
|-------------------------------------|--------------------------------|-----------------------------------|------------------------------------|--------------------------------|------------------------------|------------------------------|------------------------|
| Work Prescriptive                   | 1,814.28                       | 2,163.11                          | 2,034.88                           | 2,034.88                       | 112%                         | 1,701.35                     | 84%                    |
| Work Custom                         | 2,803.61                       | 2,704.36                          | 2,813.07                           | 2,813.07                       | 100%                         | 2,112.24                     | 75%                    |
| Public Efficient<br>Street Lighting | -                              | -                                 | -                                  | -                              | N/A                          | -                            | N/A                    |
| C&I Portfolio Totals                | 4,617.89                       | 4,867.47                          | 4,847.94                           | 4,847.94                       | 105%                         | 3,813.59                     | 79%                    |

 Table 1-6 Summary of Peak Demand Impacts – PY2022

#### 1.3. Cost Effectiveness Evaluation Findings

ADM performed the following cost effectiveness tests for the programs: Total Resource Cost (TRC) test, Utility Cost Test, Participant Cost Test (PCT), and Ratepayer Impact Measure (RIM) test. A test score above one signifies that, from the perspective of the test, the program benefits were greater than the program costs. Table 1-7 shows the test results for each program.

| Program                         | Program<br>Administrator<br>Cost Test (aka<br>USCRT, or<br>UCT) | Total<br>Resource Cost<br>Test | Ratepayer<br>Impact<br>Measure | Participant<br>Cost Test |
|---------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------|
| Work Prescriptive               | 2.73                                                            | 1.81                           | 0.31                           | 5.95                     |
| Work Custom                     | 2.22                                                            | 2.77                           | 0.31                           | 18.39                    |
| Public Efficient Streetlighting | 0.99                                                            | 0.76                           | 0.25                           | 2.39                     |
| C&I Portfolio Total             | 1.90                                                            | 1.59                           | 0.30                           | 5.39                     |

Table 1-7 Summary of PY2022 Benefit-Cost Ratios

### 1.4. Evaluation Findings and Recommendations

### 1.4.1. Work Custom and Prescriptive

Based on the results of the analysis, ADM identified the following key findings and recommendations I&M could consider as they implement their efficiency programs for commercial and industrial customers.

Collaboration and communication between CLEAResult and I&M staff led the program to identify several key measures and incentives that would appeal to the market and encourage participation in the Work programs that led to the program meeting goals. I&M and CLEAResult staff reported positive communication and collaboration between the two groups that is carrying into 2023. This collaboration led to the encouragement of the market to adopt measure the program had not emphasized in PY2021 such as hotel and cold air weatherization and

compressed air studies. Ultimately, this work led to increased savings for the program and to the program meeting savings goals.

The program increased outreach staffing and focused on large customers that participated in the programs in the past. As of late January 2023, three outreach specialists have regular communications with trade allies and key large customers in their respective territories to drive and support energy saving projects. In addition to working with the large customers and active trade allies in their region, these outreach specialists work with key account managers at the utility, chambers of commerce, and similar entities to alert the commercial and industrial entities in the region to the services and incentives offered by I&M. The program also focused on marketing through monthly newsletters to customers and trade allies, maintaining the program website, conducting paid search, providing online advertising, and providing program collateral at conferences, meetings, and similar functions. I&M has entered into a partnership with Allumia, a third-party provider of Efficiency as a Service. As part of this collaboration, I&M will refer its customers to Allumia, who will cover the initial cost of implementing efficiency improvements. Allumia recoups these costs through the customer's energy savings over time.

• **Recommendation 1:** With the availability of additional outreach resources, the program should also focus on reaching mid-size and large customers that have not participated in the program or have not participated in the last few years while reaping the benefits of outreach to past participants. Findings from the non-participant survey completed in PY2021 found that two-thirds of C&I customers were unaware of I&M incentives, suggesting that there is an opportunity to educate the customer on the incentives I&M offers.

**Participant survey findings indicate that contractors are playing important roles in supporting the program.** Contractors and vendors were the most common source of program awareness among survey respondents (35% learned of the program from a trade ally, contractor, vendor, or energy consultant) and contractors assisted a majority of participants with the application.

**Participants reported a positive experience with the program.** Most participants (94%) were satisfied with the program overall and all respondents reported that the application process was somewhat or completely acceptable.

### 1.5. Organization of Report

ADM prepared two volumes for this report, and they provide information on the impact, process, and cost effectiveness evaluation of the Indiana Michigan Power portfolio of C&I programs implemented in Indiana during the 2022 program year. Volume I is organized as follows:

- Chapter 2: Work Prescriptive
- Chapter 3: Work Custom
- Chapter 4: Public Efficient Streetlighting
- Chapter 5: Cost Effectiveness Evaluation

See report Volume II for chapters that present reports of site-level gross energy impacts, survey instruments and tabulated survey response information.

# 2. Work Prescriptive

This chapter presents the results of both the impact and process evaluations of the Work Prescriptive Program that Indiana Michigan Power (I&M) offered to its non-residential customers during the period of January 2022 through December 2022.

The objectives of the evaluation were to:

- Establish a pre-approval review procedure;
- Assess gross and net energy (kWh) savings and peak demand (kW) reductions resulting from participation in the program during the program year;
- Document sources of program awareness among participants;
- Assess satisfaction among participating customers; and
- Provide recommendations for program improvement as appropriate.

#### 2.1. Program Description

This program targets non-residential customers eligible for prescriptive measures. These will include commercial, industrial, and institutional customers. For-profit, non-profit, and public agencies (such as schools) are eligible to participate.

Categories of eligible measures for this program include:

- Lighting
- Lighting controls
- HVAC systems
- Variable frequency drives
- Commercial refrigeration equipment
- Commercial kitchen equipment
- Compressed Air Engineered Nozzle

#### 2.2. Data Collection

#### 2.2.1. Verification of Measures

#### 2.2.1.1. Sampling Plan

ADM selected a sample of all 2022 C&I projects for which ADM performed measurement and verification (M&V) and calculated gross realized kWh savings and kW demand reductions.

ADM used a stratified sampling approach to develop the M&V sample. A stratified sampling approach allowed for a given statistical precision and confidence level target to be met with a smaller sample size than would have been allowed by simple random sampling. Strata boundaries

were based on ex ante kWh energy savings. ADM selected a sample with enough sample units to facilitate estimation of program ex post kWh energy savings with 10% statistical precision at a 90% confidence level.

Completed program projects accumulated over the course of the program year, and sample selection occurred at multiple points in time. The timing of sample selection was contingent upon the timing of the completion of projects during the program year.

The table below shows the number of projects, ex ante gross kWh energy savings, and sampling statistics, by stratum, of the program sample.

| Variable                    | Stratum 1 | Stratum 2          | Stratum 3         | Stratum 4     | Stratum 5 | Totals     |
|-----------------------------|-----------|--------------------|-------------------|---------------|-----------|------------|
| Strata boundaries<br>(kWh)  | > 350000  | 160000 -<br>350000 | 65000 -<br>160000 | 19000 - 65000 | < 19000   |            |
| Number of projects          | 5         | 27                 | 43                | 96            | 98        | 269        |
| Total Ex Ante Annual<br>kWh | 2,043,825 | 5,879,230          | 4,364,563         | 3,251,409     | 864,244   | 16,403,270 |
| Average kWh Savings         | 408,765   | 217,749            | 101,501           | 33,869        | 8,819     | 60,978     |
| Std. dev. of kWh savings    | 40,950    | 49,302             | 30,295            | 13,281        | 4,941     | 138,768    |
| Coefficient of variation    | 0.1       | 0.23               | 0.3               | 0.39          | 0.56      |            |
| Final design sample         | 1         | 7                  | 6                 | 5             | 4         | 23         |

Table 2-1 Population Statistics Used for Work Prescriptive Sample Design

## 2.2.1.2. Verification Data Collection Procedures

ADM used remote verifications to collect project-specific data. ADM staff accomplished three major tasks with these communications:

- First, ADM staff verified the implementation status of all measures for which customers received incentives. They verified the correct installation of the energy efficiency measures and that they still functioned properly.
- Second, ADM staff collected additional data, when necessary, needed to analyze the realized energy savings from the installed improvements and measures. ADM collected data in a form prepared specifically for the project in question after an in-house review of the project file.
- Third, ADM interviewed the contact personnel at a facility to obtain additional information on the installed system to complement the data collected from other sources.

## 2.2.2. Participant Survey

ADM administered a survey to Work Prescriptive and Work Custom participants to collect data for use in estimating net savings and obtaining feedback about participants' experience with the program. Table 2-2 summarizes the survey data collection efforts. ADM contacted participants by email and a segment of participants with larger projects that did not respond to the October email invitation were contacted by telephone to complete the survey.

| Mode                                        | Time Frame   | Number of<br>Contacts | Number of<br>Completions |
|---------------------------------------------|--------------|-----------------------|--------------------------|
| Email                                       | October 2022 | 131                   | 13                       |
| Phone follow-up to October email invitation | January 2023 | 26                    | 3                        |
| Email                                       | January 2023 | 48                    | 1                        |
| Total                                       | 179          | 17                    |                          |

| $T_{111} \rightarrow \gamma \gamma$ | $\mathcal{L}$ $\mathbf{W} = \mathbf{I} \mathbf{D}$ | $1 W \cdot 1 C \cdot \cdot \cdot$ | D = (C - 11 - 12) |
|-------------------------------------|----------------------------------------------------|-----------------------------------|-------------------|
| Tanie Z-Z Summary                   | OT WORK Prescriptive                               | ana work ( usion                  |                   |
| 1 4010 2 2 Stilling                 | of Work Prescriptive                               | and non custom                    | Data Concenton    |

### 2.2.3. Staff Interviews

The evaluation team completed staff interviews with the key staff responsible for managing and implementing the Work programs. Specifically, the interviews covered:

- The program approach to outreach and marketing.
- Any recent changes to measure and incentives.
- The launch of new program offerings like the midstream offering and the efficiency as a service element and the associated partnership with Allumia.
- Feedback from participants and trade allies about their satisfaction with the program.
- Key successes and challenges experience in the last year.

The evaluation team completed two interviews, one with the key I&M staff person responsible for the Work programs, and the second with four CLEAResult staff that worked in management, marketing, reporting, and rebate processing (Table 2-3).

Table 2-3 Staff Interview Summary

| Interviews     | Title                                             | Key Duties                                                                                                  |  |  |
|----------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|
| Interview #1   | Programs Coordinator at Indiana<br>Michigan Power | Manage all energy efficiency work for I&M<br>including being the primary point of contact for<br>CLEAResult |  |  |
|                | Marketing Portfolio Manager                       | Oversee I&M marketing campaigns and demand generation                                                       |  |  |
| Interview #2   | Program Director                                  | Oversee CLEAResult work for I&M Residential and<br>Commercial Programs                                      |  |  |
| 1110111010 112 | Senior Program Manager                            | Oversee Work Programs including being the key<br>liaison with I&M staff                                     |  |  |
|                | Program Analyst                                   | Reporting, forecasting, and rebate processing                                                               |  |  |

## 2.3. Estimation of Ex Post Gross Savings

### 2.3.1. Methodology for Estimating Ex Post Gross Savings

### 2.3.1.1. Review of Documentation

I&M's program implementation contractor provided documentation for the sampled energy efficiency projects undertaken at customer facilities. ADM's first step in the evaluation effort was

to review this documentation and other program materials that were relevant to the evaluation effort.

For each sampled project, ADM reviewed the available documentation (e.g., audit reports, savings calculation work papers, etc.) for each rebated measure, with attention given to the calculation procedures and documentation for savings estimates. Reviewed documents included program forms, reports, billing system data, weather data, and any other potentially useful data. For each application, ADM determined if the following types of information was available for each application:

- Documentation for the equipment changed, including (1) descriptions, (2) schematics, (3) performance data, and (4) other supporting information
- Documentation for the new equipment installed, including (1) descriptions, (2) schematics,
   (3) performance data, and (4) other supporting information
- Information about the savings calculation methodology, including (1) what methodology was used, (2) specifications of assumptions and sources for these specifications, and (3) correctness of calculations.

In addition to the above activities, ADM completed a review of program tracking data. The purpose of the review was to assess the sufficiency of the tracking data for supporting program implementation and evaluation. To this end, ADM reviewed the program data to verify tracking of the following fields, that the fields were populated (i.e., the data were not missing), and that the values were reasonable.

- Unique customer identifier, such as customer account number;
- Customer specific project data such as contact name and information, building type;
- Project milestone dates such as application submission date, application approval, incentive payment (where applicable);
- Measure specific information such as:
  - type of measure;
  - specific measure;
  - ex ante measure kWh energy savings and peak kW reductions;
  - measure attributes necessary to estimate measure savings (where applicable);
  - o unique measure identifier (e.g., numeric or alpha-numeric code);
  - unit serial number (where applicable);
  - o incremental costs / project costs
- Vendor/Contractor business name, contact name and information (where applicable);
- Incentive amounts; and
- Application status.

ADM provided recommendations, specifically regarding tracking measure level information, to the implementation contractor based on this review.

#### 2.3.1.2. Procedures for Estimating Measure-Level Gross Energy Savings

A breakdown of sampled measures for the Work Prescriptive Program is below in Table 2-4.

| Measure Category                            | Ex Ante<br>Annual kWh<br>Savings | Ex Post<br>Annual Gross<br>kWh Savings | Gross<br>Realization<br>Rate |
|---------------------------------------------|----------------------------------|----------------------------------------|------------------------------|
| Air Conditioner                             | 10,929                           | 2,138                                  | 20%                          |
| Exterior Area Lighting Fixture - HID to LED | 300,406                          | 374,314                                | 125%                         |
| Heat Pump                                   | 11,245                           | 2,396                                  | 21%                          |
| HID-to-LED Retrofit                         | 7,698                            | 6,828                                  | 89%                          |
| Interior Area Lighting Fixture - HID to LED | 326,367                          | 352,611                                | 108%                         |
| LED Exit Sign                               | 6,474                            | 11,867                                 | 183%                         |
| LED MR16 Replacing Incandescent             | 4,187                            | 11,238                                 | 268%                         |
| LED Recessed Light Fixture/Lamps            | 105,537                          | 135,706                                | 129%                         |
| LED Tube Relamp                             | 888,047                          | 1,197,759                              | 135%                         |
| Lighting Occupancy Sensor                   | 303,105                          | 270,778                                | 89%                          |
| Streetlight Fixture                         | 720,543                          | 767,848                                | 107%                         |
| VFD Added to HVAC Fans                      | 67,080                           | 64,386                                 | 96%                          |
| Total                                       | 2,751,620                        | 3,197,869                              | 116%                         |

 Table 2-4 Breakdown of Sampled Prescriptive Measures

ADM calculated a kWh energy savings gross realization rate and a peak kW reduction gross realization rate for each site in the M&V sample. Sites with relatively high or low gross realization rates were analyzed to determine the reasons for the discrepancy between ex ante and ex post energy savings. The site-level gross impact analysis results for each M&V sample site are presented in Volume II of the report. These reports outline the data sources and analytical approaches employed in the calculation of measure impacts.

### 2.3.2. Results of Ex Post Gross Savings Estimations

The kWh gross realization rate is the ratio of sampled measure ex post gross kWh energy savings to sampled measure ex ante kWh energy savings. The kW gross realization rate is the ratio of sampled measure ex post gross kW demand savings to sampled measure ex ante kW demand savings. Since a stratified sampling approach was employed for this program, stratum-level kWh and kW gross realization rates were developed for each sampling stratum.

Program-level gross ex post gross kWh energy savings are calculated as follows:

- The ex-ante kWh energy savings of non-sampled measures are factored by the applicable stratum-level kWh gross realization rates to calculate ex post gross kWh energy savings for non-sampled measures.
- The ex post gross kWh energy savings of all sampled measures and all non-sampled measures are summed.

Program-level gross ex post gross kW demand savings are calculated as follows:

- The ex-ante kW demand savings of non-sampled measures are factored by the applicable stratum-level kW gross realization rates to calculate ex post gross kW savings for non-sampled measures.
- The ex post gross kW demand savings of all sampled measures and all non-sampled measures are summed.

#### 2.3.2.1. Ex Post Gross kWh Savings

Table 2-5 displays the ex ante and ex post gross kWh savings of the Work Prescriptive Program including gross realization rates for sampled projects.

| Stratum | Project<br>Number | Measure                                        | Ex Ante<br>kWh<br>Savings | Gross Ex<br>Post kWh<br>Savings | Project<br>Gross<br>Realization<br>Rate |
|---------|-------------------|------------------------------------------------|---------------------------|---------------------------------|-----------------------------------------|
| 1       | 120               | LED lighting                                   | 377,667                   | 808,050                         | 214%                                    |
| 2       | 114               | LED lighting and occupancy sensor              | 304,536                   | 39,356                          | 13%                                     |
| 2       | 103               | Streetlighting                                 | 253,735                   | 293,247                         | 116%                                    |
| 2       | 109               | LED lighting                                   | 214,724                   | 356,414                         | 166%                                    |
| 2       | 104               | Streetlighting                                 | 198,396                   | 207,192                         | 104%                                    |
| 2       | 105               | Streetlighting                                 | 183,265                   | 190,845                         | 104%                                    |
| 2       | 121               | LED lighting                                   | 181,652                   | 277,845                         | 153%                                    |
| 2       | 110               | LED lighting                                   | 165,542                   | 151,444                         | 91%                                     |
| 3       | 115               | LED lighting and occupancy sensor              | 150,349                   | 142,410                         | 95%                                     |
| 3       | 116               | LED lighting, exit signs, and occupancy sensor | 133,074                   | 149,814                         | 113%                                    |
| 3       | 117               | LED lighting                                   | 93,982                    | 99,395                          | 106%                                    |
| 3       | 102               | Streetlighting                                 | 85,147                    | 76,564                          | 90%                                     |
| 3       | 101               | VFD, Heat pump                                 | 78,325                    | 66,782                          | 85%                                     |
| 3       | 100               | LED lighting                                   | 67,092                    | 82,659                          | 123%                                    |
| 4       | 122               | LED lighting                                   | 62,052                    | 33,159                          | 53%                                     |
| 4       | 106               | LED lighting and occupancy sensor              | 59,085                    | 81,976                          | 139%                                    |
| 4       | 118               | Occupancy sensor                               | 54,900                    | 52,612                          | 96%                                     |
| 4       | 108               | LED lighting                                   | 37,485                    | 54,443                          | 145%                                    |
| 4       | 107               | LED lighting                                   | 25,384                    | 23,646                          | 93%                                     |

Table 2-5 Work Prescriptive Project-Level Ex Ante and Ex Post kWh Savings

| Stratum                    | Project<br>Number | Measure                            | Ex Ante<br>kWh<br>Savings | Gross Ex<br>Post kWh<br>Savings | Project<br>Gross<br>Realization<br>Rate |
|----------------------------|-------------------|------------------------------------|---------------------------|---------------------------------|-----------------------------------------|
| 5                          | 119               | Air conditioner and LED exit signs | 12,589                    | 3,798                           | 30%                                     |
| 5                          | 113               | LED lighting and occupancy sensor  | 5,610                     | 2,831                           | 50%                                     |
| 5                          | 112               | LED lighting                       | 5,454                     | 2,718                           | 50%                                     |
| 5                          | 111               | LED lighting                       | 1,572                     | 669                             | 43%                                     |
| All Non-Sample<br>Projects |                   |                                    | 13,651,435                | 15,233,525                      | 112%                                    |
| Total                      |                   |                                    | 16,403,055                | 18,431,394                      | 112%                                    |

Fifteen of the 23 sampled prescriptive projects had a realization rate that was lower than 90% or higher than 110%.

- Projects 100, 103, 106, 108, 109, 116, 120 & 121 had high realization rates (123%, 116%, 139%, 145%, 166%, 113%, 214% &153%, respectively). The difference between the ex ante and the ex post savings was due to the ex ante analysis applying a deemed per fixture/lamp kWh savings value that was multiplied by the quantity of measures to estimate the project savings, whereas the ex post analysis used project-specific information (wattages, hours of use for the space, and appropriate heating and cooling interactive factors).
- Projects 111,112, & 113 had low realization rates (43%, 50% & 50%, respectively) for lighting measures. The ex ante deemed savings per unit values may have been derived with hours of use greater than the ex post analysis, which verified 2,500 annual operating hours. The application form for lighting projects also includes a second savings estimate, labeled "Annual kWh Reduction", with a result that was similar to the ex post savings, as hours of use were included in the supplemental calculation.
- In Project 114, there was a double-counting issue with the installed lighting due to the disaggregation of the installed measures into the Prescriptive or Custom programs. The asbuilt lighting survey was referenced by separate Excel spreadsheet pivot tables. Specifically, when the installed measures were grouped into the Custom program, the ex ante savings were based on the pivot table that referenced the "existing fixture." On the other hand, when the installed measures were grouped into the Prescriptive program, the ex ante savings were based on the pivot table that referenced the unique field for "efficient fixture." The ex post method retained the 1:1 retrofits in the prescriptive savings, and the measures with a quantity changes in the custom savings.
- Project 122 had a low realization rate (53%) for lighting measures. The ex ante deemed savings per unit values may have been derived with hours of use greater than the ex post analysis, which verified 2,340 annual operating hours. A second reason was that the same deemed savings estimate was applied to 105W and 155W efficient lamps, which resulted in realization rates of 87% and 51%, respectively.

Two prescriptive heat pump projects also had low realization rates.

Projects 101 and 119 had realization rates of 85% and 30%, respectively. Both projects involved heat pump measures, when air conditioning units with a gas heat source were installed. The ex post savings analysis only counted cooling savings from the units. Because both projects were new construction projects, the ex post analysis referenced federal appliance standards for the baseline efficiency.

Table 2-6 presents the ex post annual gross kWh savings for the Work Prescriptive Program from January 2022 through December 2022.

| Ex Ante<br>Gross kWh<br>Savings | Gross<br>Audited<br>kWh<br>Savings | Gross<br>Verified<br>kWh<br>Savings | Ex Post<br>Gross kWh<br>Savings | Gross<br>Realization<br>Rate |
|---------------------------------|------------------------------------|-------------------------------------|---------------------------------|------------------------------|
| 16,403,055                      | 18,883,903                         | 18,431,394                          | 18,431,394                      | 112%                         |

 Table 2-6 Ex Post Annual Gross kWh

#### 2.3.2.2. Ex Post Gross kW Reductions

Table 2-7 presents the ex post peak kW reduction for the Work Prescriptive Program from January 2022 through December 2022.

| Table 2-7 | Ex Post | Peak kW | Reduction |
|-----------|---------|---------|-----------|
|           |         |         |           |

| Ex Ante<br>Gross kW<br>Savings | Gross<br>Audited<br>kW<br>Savings | Gross<br>Verified<br>kW<br>Savings | Ex Post<br>Gross<br>kW<br>Savings | Gross<br>Realization<br>Rate |
|--------------------------------|-----------------------------------|------------------------------------|-----------------------------------|------------------------------|
| 1,814.28                       | 2,163.11                          | 2,034.88                           | 2,034.88                          | 112%                         |

#### 2.4. Estimation of Ex Post Net Savings

#### 2.4.1. Methodology for Estimating Ex Post Net Savings

The net savings analysis was used to determine what part of the gross energy savings achieved by program participants could be attributed to the effects of the program. The net savings attributed to program participants are the gross savings less free ridership, plus spillover.

#### 2.4.1.1. Methodology for Estimating Free Ridership

A survey of program participants that asked them about role of the program in their decision to implement the energy efficiency measures informed the net-to-gross analysis.

ADM considered three factors to determine what percentage of savings may be attributable to free ridership. The three factors are:

Plans and intentions of firm to install a measure even without support from the program;

- Influence that the program had on the decision to install a measure; and
- A firm's previous experience with a measure installed under the program.

For each of these factors, ADM applied rules to develop binary variables indicating whether a participant's behavior shows free ridership. These rules make use of answers to questions on the decision maker survey questionnaire.

The first factor requires determining if a participant's intention was to install an energy efficiency measure even without the program. The answers to a combination of several questions are used with a set of rules to determine whether a participant's behavior indicates likely free ridership. Two binary variables account for customer plans and intentions: one, based on a more restrictive set of criteria that may describe a high likelihood of free ridership, and a second, based on a less restrictive set of criteria that may describe a relatively lower likelihood of free ridership.

The first, more restrictive criteria indicating customer plans and intentions that likely signify free ridership are as follows:

- The respondent answers "yes" to the following two questions: "Did you have plans to install the measure before participating in the program?" and "Would you completed the [MEASURE] project even if you had not participated in the program?"
- The respondent answers "definitely would have installed" to the following question: "If the financial incentive from the [PROGRAM] had not been available, how likely is it that you would have installed [MEASURE] anyway?"
- The respondent answers "did not affect timing of purchase and installation" to the following question: "How did the availability of information and financial incentives through the [PROGRAM] affect the timing of your purchase and installation of [MEASURE]?"
- The respondent answers "no, the program did not affect level of efficiency that we chose for equipment" in response to the following question: "Did you purchase and install the [MEASURE] earlier than you otherwise would have without the program?"

The second, less restrictive criteria indicating customer plans and intentions that likely signify free ridership are as follows:

The respondent answers "yes" to the following two questions: "Did you have plans to install the [MEASURE] before participating in the program?" and "Would you have completed the [MEASURE] project even if you had not participated in the program?"

- Either the respondent answers "definitely would have installed" or "probably would have installed" to the following question: "If the financial incentive from the [PROGRAM] had not been available, how likely is it that you would have installed [MEASURE] anyway?"
- Either the respondent answers "did not affect timing of purchase and installation" to the question: "Did you purchase and install the [MEASURE] earlier than you otherwise would have without the program?" or the respondent indicates that while program information and financial incentives did affect the timing of equipment purchase and installation, in the

absence of the program they would have purchased and installed the equipment within the next two years.

• The respondent answers "no, the program did not affect level of efficiency that we chose for equipment" in response to the following question: "Did you choose equipment that was more energy efficient than you would have chosen because of the program?"

The second factor requires determining if a customer reports that a recommendation from a Program representative or experience with the program was influential in the decision to install a particular piece of equipment or measure.

The criterion indicating that program influence may signify a lower likelihood of free ridership is that either of the following conditions is true:

- The respondent answers "very important" to the following question: "How important was previous experience with the [Program Name] in making your decision to install [Equipment/Measure]?
- The respondent answers "yes" to the following question: "Did a representative of the [Program Name] recommend that you install [Equipment/Measure]?"

The third factor requires determining if a participant in the program indicates that he or she had previously installed an energy efficiency measure like the one that they installed under the program without an energy efficiency program incentive during the last three years. A participant indicating that he or she had installed a similar measure is considered to have a likelihood of free ridership.

The criteria indicating that previous experience may signify a higher likelihood of free ridership are as follows:

- The respondent answers "yes" to the following question: "Before participating in the [Program Name], had you installed any equipment or measure similar to [Rebated Equipment/Measure] at your facility?"
- The respondent answers "yes, purchased energy efficient equipment but did not apply for financial incentive." To the following question: "Has your organization purchased any energy efficient equipment in the last three years for which you did not apply for a financial incentive through the [Program Name?"

The four sets of rules just described are used to construct four different indicator variables that address free ridership behavior. For each customer, a free ridership value is assigned based on the combination of variables. With the four indicator variables, there are 12 applicable combinations for assigning free ridership scores for each respondent, depending on the combination of answers to the questions creating the indicator variables. Table 2-8 shows these values.

| Had Plans and<br>Intentions to Install<br>Measure without the<br>Program?<br>(Definition 1) | Had Plans and<br>Intentions to Install<br>Measure without the<br>Program?<br>(Definition 2) | all The Program had Influence on Had Previous |   | Free Ridership<br>Score |  |
|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------|---|-------------------------|--|
| Y                                                                                           | Y                                                                                           | Y                                             | Y | 100%                    |  |
| Y                                                                                           | Y                                                                                           | Ν                                             | Y | 100%                    |  |
| Y                                                                                           | Y                                                                                           | Ν                                             | Ν | 100%                    |  |
| Y                                                                                           | Y                                                                                           | Y                                             | Ν | 67%                     |  |
| Ν                                                                                           | Y                                                                                           | Ν                                             | Y | 67%                     |  |
| Ν                                                                                           | Y                                                                                           | Y                                             | Y | 33%                     |  |
| Ν                                                                                           | Y                                                                                           | Ν                                             | Ν | 33%                     |  |
| Ν                                                                                           | Ν                                                                                           | Ν                                             | Y | 33%                     |  |
| Ν                                                                                           | Y                                                                                           | Y                                             | Ν | 0%                      |  |
| Ν                                                                                           | Ν                                                                                           | Y                                             | Y | 0%                      |  |
| Ν                                                                                           | Ν                                                                                           | Y                                             | Ν | 0%                      |  |
| Ν                                                                                           | Ν                                                                                           | Ν                                             | Ν | 0%                      |  |

Table 2-8 Free Ridership Scoring

The free ridership assessment also included questions on the participants' financial ability to pay for the measures. These questions were used to assess the consistency of the responses to the questions used to score free ridership.

Responses are considered inconsistent if the respondent indicates that they were not financially able to install the equipment, but state that they have plans to install the equipment and would have installed it without the program incentive. There were no cases where respondents reported this and that they could not have afforded the measure without program support.

### 2.4.1.2. Methodology for Estimating Spillover

Program participants could implement additional energy saving measures without receiving a program incentive because they participated in the program. The energy savings resulting from these additional measures constitute program participant spillover effects.

To assess participant spillover savings, survey respondents are asked whether or not they implemented any additional energy saving measures for which they did not receive a program incentive. Respondents are also asked to provide information on the measures implemented for use in estimating the associated energy savings.

To determine if the savings from the reported measures were attributable to the program, survey respondents were asked questions about the degree to which their experience with the program influenced them to implement the measures and the likelihood of implementing the measures in the absence of the program. Specifically, respondents were asked the following questions:

- SO1: How important was your experience with the [PROGRAM\_NAME] in your decision to install this lighting equipment?
- SO2: If you had NOT participated in the [PROGRAM\_NAME], how likely is it that your organization would still have installed this lighting equipment?

ADM calculated the spillover score using Equation 2-1.

Equation 2-1

#### *Spillover* = *Average*(*SO1*, *10* – *SO2*)

Savings from measures associated with a spillover score greater than 7 were considered attributable to the program.

All survey response data were systematically reviewed by a researcher who was familiar with the portfolio. As part of this review, the researcher could determine whether the available information justifies modifying the spillover score calculated in accordance with the algorithm outlined below. The spillover score calculated in accordance with the algorithm outlined above could be revised in instances in which there were significant apparent inconsistencies between responses provided by the decision maker or in cases in which the responses were apparently invalidated by other information regarding the measure(s). Additionally, responses may be dropped in cases where respondents do not report sufficient information to estimate the savings associated with the measure implemented.

2.4.2. Results of Ex Post Net Savings Estimation

Because a limited number of responses (n = 17) were obtained from PY2022 participants, ADM used the survey responses for PY2021 and PY2022 and weighted them based on the ex post kWh savings to calculate the average free ridership rate applicable to the aggregate PY2021 and PY2022 ex post savings.

To estimate the free ridership rate applicable to PY2022 survey-nonrespondents, ADM adjusted the combined PY2021/PY2022 free ridership rate. This adjustment involved taking into account the reported free ridership rate from PY2021 and the free ridership rate from PY2022 survey respondents. This adjustment was necessary to develop an estimate of the free ridership applicable to PY2022 non-survey respondents, while ensuring that the weighted average free ridership rate is applied, in the aggregate, to the PY2021 and PY2022 ex post savings.

Table 2-9 summarizes the net ex post kWh savings and the net ex post kW demand reduction of the Work Prescriptive Program.

| Category                          | kWh         | kW       |
|-----------------------------------|-------------|----------|
| Ex Ante Gross Savings             | 16,403,055  | 1,814.28 |
| Gross Audited Savings             | 18,883,903  | 2,163.11 |
| Gross Verified Savings            | 18,431,394  | 2,034.88 |
| Ex Post Gross Savings             | 18,431,394  | 2,034.88 |
| Gross Realization Rate            | 112%        | 112%     |
| Ex Post Free Ridership            | 2,273,709   | 333.52   |
| Ex Post Non-Participant Spillover | -           | -        |
| Ex Post Participant Spillover     | -           | -        |
| Ex Post Net Savings               | 16,157,685  | 1,701.35 |
| Net-to-Gross Ratio                | 88%         | 84%      |
| Ex Post Net Lifetime Savings      | 205,579,377 | n/a      |

#### 2.5. Process Evaluation

ADM completed a process evaluation of the PY2022 program. The following research activities informed the process evaluation.

- Interviews and discussions with program staff.
- Review of program documents and tracking data.
- Interviews with participating program trade allies.
- A survey of program participants.
- A survey of I&M customers that did not participate in the program.

#### 2.5.1. Process Evaluation Findings

ADM interviewed program staff and completed a survey of program participants. The interviews with program staff provided information on how the program was implemented in 2022, changes made since 2021, and key successes and challenges. Surveys provided feedback from customers on their perspective of program processes.

#### 2.5.1.1. Program Team Perspective

### 2.5.1.1.1. Outreach and Marketing

The Work programs rely on outreach specialists that work directly with customers and trade allies to drive energy saving projects to the program. As of late January 2023, two outreach specialists have regular communications with trade allies and key large customers in their respective territories to drive and support energy saving projects. In addition to working with the large customers and active trade allies in their region, these outreach specialists work with key account managers at the utility, chambers of commerce, and similar entities to alert the commercial and industrial entities in the region to the services and incentives offered by I&M.

**The program provides marketing efforts that complement the outreach specialists' efforts**. The Work programs generate demand by providing monthly newsletters to customers and trade allies, maintaining the program website, conducting paid search, providing online advertising, and providing program collateral at conferences, meetings, and similar functions. Staff reported they emphasize marketing efforts at times when there are program changes such as when the program provides bonus incentives or is trying to encourage the adoption of specific measures.

The program relies partially on large customers repeatedly using the Work programs for projects so keeping these customers informed of program changes and opportunities is important to continue to gather savings. Staff reported that several large industrial customers in the region got involved with the program by doing a lighting project at one site and then doing follow-up projects at other sites in the region. According to staff, after the program began emphasizing compressed air incentives, several companies have recently begun doing compressed air projects across multiple sites in the region. And, because the compressed air studies and work need to be done annually, these sites will likely need to be reminded of the compressed air opportunities for years to come, thus also providing an opening for the program to promote other savings opportunities.

The program has emphasized reaching large energy users in recent years to concentrate on the large savings opportunities but has recently begun to promote program offerings to smaller users. The program does reach out to chambers of commerce and economic development commissions to promote program offerings to small commercial customers but there has not been a concerted effort to reach these organizations in the same way as the large energy users because of the savings opportunities available at large organizations. However, the program recently brought in an outreach specialist to focus on "mom-and-pop shops" with offerings like exterior lighting incentives, an incentive most likely to appeal to many of these smaller organizations. Additionally, in 2023, there will be an emphasis on rolling out a small business direct install offering that has already attracted interest from trade allies wanting to participate.

In the last year and into 2023, the program has emphasized recruiting compressed air trade allies. Staff reported identifying significant opportunities for energy savings coming from compressed air leak detection in 2021 and early 2022. To gather savings from that work, the program looked to boost their numbers of trade allies doing this type of work in 2022. According to staff, the program was successful in recruiting these allies as they were able to meet energy savings goals in large part due to the uptick in these types of projects in 2022.

## 2.5.1.1.2. Program Changes to Measures and Incentives

Some trade allies in neighboring utility areas and states have become more active in I&M territory due to a change in incentives. Staff reported that a large trade ally that completes many energy saving projects in a neighboring utility area has begun to work more in I&M territory, in part due to the increase in incentives offered by I&M. Additionally, another trade ally that has been active in Michigan with the program, has recently become more active in Indiana in part because of the increase in incentives offered in Indiana.

## 2.5.1.1.3. New Work Program Offerings

The energy efficiency as a service program (EESP) element has not seen notable participation in 2022, mostly because of how new the service is. Staff reported that the EESP service, provided through a partnership with Allumia, started in November 2022 and customers are now learning about the service. I&M launched this service to help large energy users find creative ways to finance energy saving capital projects.

### 2.5.1.1.4. Feedback from the Market

**Trade allies and participants tell program staff they are largely satisfied with the services offered.** According to staff, trade allies and participants report that the participation process is relatively easy and when they have questions they know they can work with an outreach specialist that will assist them. As discussed in Section 2.2.2, survey responses collected for the evaluation effort indicate a high rate of program satisfaction.

**Participants reported to staff that they appreciate the non-energy benefits of their project.** Specifically, participants told staff they appreciate the safety improvements provided by their new lighting and the reduced maintenance costs associated with upgraded equipment.

#### 2.5.1.1.5. Successes and Challenges in 2022

Staff noted these successes in 2022:

- Communication and collaboration between the implementation staff and the I&M staff was effective in 2023. Specifically, when problems, issues, or opportunities arose throughout the year, each party made the other aware of the issue and they worked collaboratively to address it. For example, the teams started seeing savings coming in from the compressed air projects and they are now working together on building upon those opportunities by looking into the possibility and cost effectiveness of offering compressor upgrades.
- CLEAResult reviewed the list of available incentives in the first half of 2022 looking for opportunities to encourage the adoption of certain measures in the market. Compressed air studies, engineered nozzles, and hotel weatherization, were all measures that appeared to be underutilized in the region, so the program staff worked to encourage the adoption of these measures and found many savings projects.
- The program reached its savings goals. The program managed to meet goals even though it got a slow start to the program year and booked most of its projects from Q2 to Q4 2022. Figure 2-1 displays the accumulation of savings during the course of the year. Approximately, two-thirds of the savings came from projects completed after July.

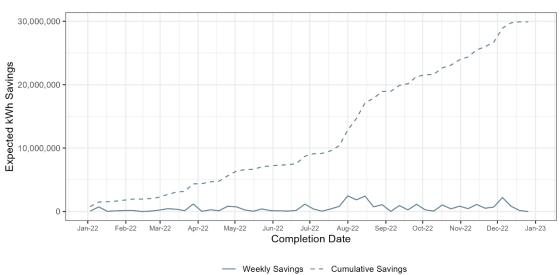
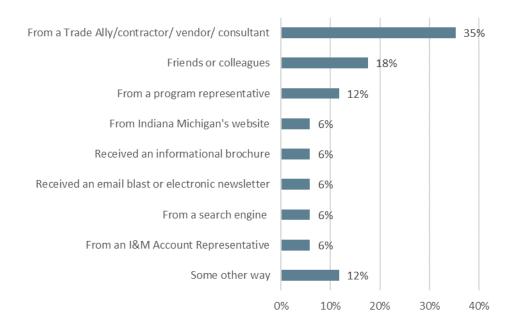
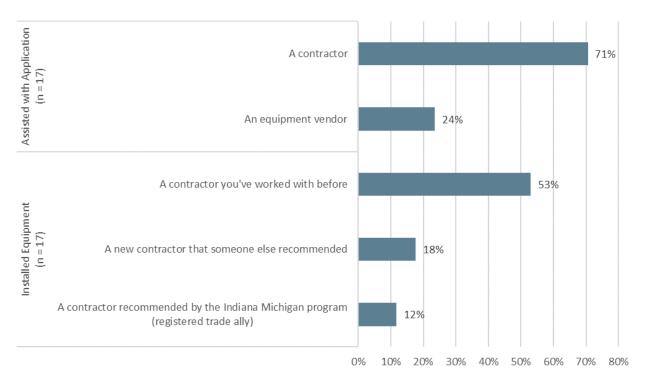




Figure 2-1 Weekly and Cumulative Ex Ante Savings


#### 2.5.1.2. Participant Survey Findings

**Contractors and vendors are playing important roles in supporting the program**. Contractors and vendors were the most common source of program awareness. Thirty-five percent of respondents learned of the program from a trade ally, contractor, vendor, or energy consultant (see Figure 2-2). Additionally, as shown in Figure 2-3, vendors and contractors assisted a majority of participants with the application. Fifty-three percent of participants reported that a contractor they had worked with before installed the equipment, 18% that it was installed by a contractor recommended to them, and 12% that it was a contractor they learned about through the program.



#### Figure 2-2 Initial Source of Program Awareness

Figure 2-3 Application Assistance and Equipment Installation



**Respondents found the application process to be acceptable.** All respondents reported that the application process was somewhat or completely acceptable and none of the rated aspects of the

application process were rated as unacceptable by any respondents. All but one respondent reported that they had a clear sense of who to go through for assistance with the application.

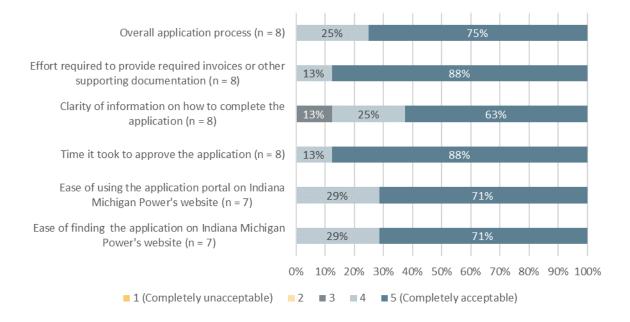
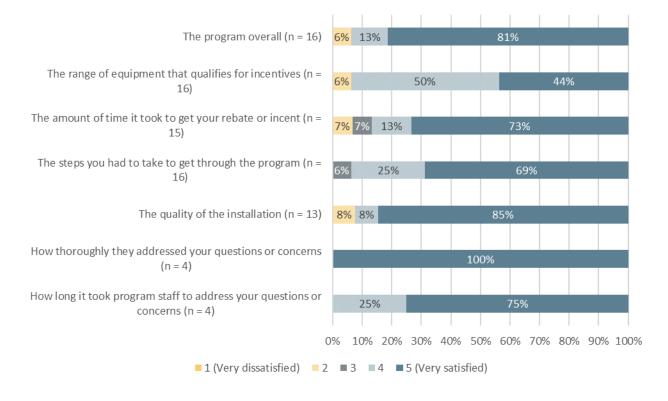




Figure 2-4 Acceptability of the Application Process

Most participants (94%) were satisfied with the program overall. One respondent did indicate that they were somewhat dissatisfied with the program overall, the range of qualifying equipment, the time it took to get the rebate, and the quality of installation.



### Figure 2-5 Program Satisfaction

#### 2.6. Findings and Recommendations

Based on the results of the analysis, ADM identified several key conclusions and recommendations I&M could consider as they implement their efficiency programs for commercial and industrial customers.

**Collaboration and communication between CLEAResult and I&M staff led the program to identify several key measures and incentives that would appeal to the market and encourage participation in the Work programs that led to the program meeting goals.** I&M and CLEAResult staff reported positive communication and collaboration between the two groups that is carrying into 2023. This collaboration led to the encouragement of the market to adopt measure the program had not emphasized in PY2021 such as hotel and cold air weatherization and compressed air studies. Ultimately, this work led to increased savings for the program and to the program meeting savings goals.

The program increased outreach staffing and focused on large customers that participated in the programs in the past. As of late January 2023, three outreach specialists have regular communications with trade allies and key large customers in their respective territories to drive and support energy saving projects. In addition to working with the large customers and active trade allies in their region, these outreach specialists work with key account managers at the utility, chambers of commerce, and similar entities to alert the commercial and industrial entities in the region to the services and incentives offered by I&M. The program also focused on marketing through monthly newsletters to customers and trade allies, maintaining the program website, conducting paid search, providing online advertising, and providing program collateral at conferences, meetings, and similar functions. I&M has entered into a partnership with Allumia, a third-party provider of Efficiency as a Service. As part of this collaboration, I&M will refer its customers to Allumia, who will cover the initial cost of implementing efficiency improvements. Allumia recoups these costs through the customer's energy savings over time.

Recommendation 1: With the availability of additional outreach resources, the program should also focus on reaching mid-size and large customers that have not participated in the program or have not participated in the last few years while reaping the benefits of outreach to past participants. Findings from the non-participant survey completed in PY2021 found that two-thirds of C&I customers were unaware of I&M incentives, suggesting that there is an opportunity to educate the customer on the incentives I&M offers.

**Participant survey findings indicate that contractors are playing important roles in supporting the program.** Contractors and vendors were the most common source of program awareness among survey respondents (35% learned of the program from a trade ally, contractor, vendor, or energy consultant) and contractors assisted a majority of participants with the application.

**Participants reported a positive experience with the program.** Most participants (94%) were satisfied with the program overall and all respondents reported that the application process was somewhat or completely acceptable.

# 3. Work Custom

This chapter presents the results of both the impact and process evaluations of the Work Custom Program that Indiana Michigan Power (I&M) offered to its non-residential customers from January 2022 through December 2022.

The objectives of the evaluation are to:

- Establish a pre-approval review procedure;
- Assess gross and net energy (kWh) savings and peak demand (kW) reductions resulting from participation in the program during the program year;
- Assess satisfaction among participating customers; and
- Provide recommendations for program improvement as appropriate.

#### 3.1. Program Description

The Work Custom Program targets commercial and industrial accounts and provides incentives to implement efficiency measures not covered by the prescriptive program. The program provides an incentive of \$0.05 per kWh saved for lighting measures, and \$0.06 per kWh saved for non-lighting measures. The program measures include non-prescriptive lighting and HVAC, and refrigeration measures, compressed air measures, industrial process improvements, and retro-commissioning.

#### 3.2. Data Collection

#### 3.2.1. Verification of Measures

#### 3.2.1.1. Sampling Plan

The sampling approach was combined for all C&I programs in 2022. The approach is described in Section 2.2.1.1 of this document on page 7.

The table below shows the number of projects, ex ante gross kWh energy savings, and sampling statistics, by stratum, of the program sample.

| Variable                    | Stratum 1 | Stratum 2          | Stratum 3          | Stratum 4         | Stratum 5 | Totals     |
|-----------------------------|-----------|--------------------|--------------------|-------------------|-----------|------------|
| Strata boundaries (kWh)     | > 600000  | 330000 -<br>600000 | 130000 -<br>330000 | 20000 -<br>130000 | < 20000   |            |
| Number of projects          | 5         | 11                 | 24                 | 54                | 58        | 152        |
| Total Ex Ante Annual<br>kWh | 4,387,827 | 4,850,478          | 5,166,337          | 2,691,015         | 522,741   | 17,618,398 |
| Average kWh Savings         | 877,565   | 440,953            | 215,264            | 49,834            | 9,013     | 115,911    |
| Std. dev. Of kWh savings    | 265,985   | 85,149             | 61,757             | 26,142            | 5,228     | 444,260    |
| Coefficient of variation    | 0.3       | 0.19               | 0.29               | 0.52              | 0.58      |            |
| Final design sample         | 5         | 3                  | 4                  | 6                 | 2         | 20         |

Table 3-1 Population Statistics Used for Work Custom Sample Design

#### *3.2.1.2. Verification Data Collection Procedure*

The data collection procedure for the Work Custom Program was the same as the approach described in Section 2.2 of this document on page 8.

#### 3.2.2. Participant Survey

The survey data collection for the Work Custom Program is described in Section 2.5.1.2 of this document on page 22.

#### 3.2.3. Staff Interviews

The staff interviews completed for the Work Custom Program is described in Section 2.5.1.1 of this document on page 19.

#### 3.3. Estimation of Ex Post Gross Savings

#### 3.3.1. Methodology for Estimating Ex Post Gross Savings

#### *3.3.1.1. Review of Documentation*

The process for reviewing program documentation for the Work Custom Program was the same as the approach described in Section 2.3.1.1 of this document on page 9.

#### 3.3.1.2. Procedures for Estimating Measure-Level Gross Energy Savings

A breakdown of sampled measures for the Work Custom Program is below in Table 3-2.

 Table 3-2 Breakdown of Sampled Custom Measures

| Measure Category                     | Ex Ante<br>Annual kWh<br>Savings | Ex Post<br>Annual<br>Gross kWh<br>Savings | Gross<br>Realization<br>Rate |
|--------------------------------------|----------------------------------|-------------------------------------------|------------------------------|
| Cold Air Weatherization              | 1,572,594                        | 733,075                                   | 47%                          |
| Compressed Air Leak Audit and Repair | 34,001                           | 34,001                                    | 100%                         |
| LED Upgrade                          | 4,952,992                        | 4,949,195                                 | 100%                         |
| New Construction Lighting            | 612,219                          | 484,247                                   | 79%                          |
| Total                                | 7,171,806                        | 6,200,518                                 | 86%                          |

During PY2022, Work Custom participants completed 72 compressed air leak projects. Of these projects, 43 were below the upper energy savings boundary for stratum 5 (20,000 kWh) and only two projects (both of which were lighting) were sampled from this stratum to meet the precision requirements. The sampled compressed air project fell into stratum 4. The remaining compressed air projects were not part of the random sample.

The sampled compressed air project realization rate was 100%. In its analysis, ADM verified the completion of the project, the hours of operation, and the energy profile and operation of the on-

site air compressor. ADM referenced the UE Systems Compressed Gas Flow Rate Curves to calculate the air loss rate at each leak based on the ultrasonic decibel (dB) reading at each leak. The approach ADM used was the same as the approach used in the ex ante savings analysis.

ADM calculated a kWh energy savings gross realization rate and a peak kW reduction gross realization rate for each site in the M&V sample. Sites with relatively high or low gross realization rates were analyzed to determine the reasons for the discrepancy between ex ante and ex post energy savings. The site-level gross impact analysis results for each M&V sample site are presented in Volume II of the report. These reports outline the data sources and analytical approaches employed in the calculation of measure impacts.

3.3.2. Results of Ex Post Gross Savings Estimation

The kWh gross realization rate is the ratio of sampled measure ex post gross kWh energy savings to sampled measure ex ante kWh energy savings. The kW gross realization rate is the ratio of sampled measure ex post gross kW demand savings to sampled measure ex ante kW demand savings. Since a stratified sampling approach was employed for this program, stratum-level kWh and kW gross realization rates were developed for each sampling stratum.

Program-level gross ex post gross kWh energy savings are calculated as follows:

- The ex-ante kWh energy savings of non-sampled measures are factored by the applicable stratum-level kWh gross realization rates to calculate ex post gross kWh energy savings for non-sampled measures.
- The ex post gross kWh energy savings of all sampled measures and all non-sampled measures are summed.

Program-level gross ex post gross kW demand savings are calculated as follows:

- The ex-ante kW demand savings of non-sampled measures are factored by the applicable stratum-level kW gross realization rates to calculate ex post gross kW savings for non-sampled measures.
- The ex post gross kW demand savings of all sampled measures and all non-sampled measures are summed.

#### 3.3.2.1. Ex Post Gross kWh Savings

Table 3-3 displays the ex ante and ex post gross kWh savings of the Work Custom Program including gross realization rates for sampled projects.

| Stratum | Project<br>Number | Measure     | Ex Ante<br>kWh<br>Savings | Gross Ex<br>Post kWh<br>Savings | Project<br>Gross<br>Realization<br>Rate |
|---------|-------------------|-------------|---------------------------|---------------------------------|-----------------------------------------|
| 1       | 216               | LED Upgrade | 1,312,492                 | 1,312,492                       | 100%                                    |
| 1       | 211               | LED Upgrade | 884,884                   | 884,938                         | 100%                                    |

Table 3-3 Work Custom Project-Level Ex Ante and Ex Post kWh Savings

| Stratum                    | Project<br>Number | Measure                              | Ex Ante<br>kWh<br>Savings | Gross Ex<br>Post kWh<br>Savings | Project<br>Gross<br>Realization<br>Rate |
|----------------------------|-------------------|--------------------------------------|---------------------------|---------------------------------|-----------------------------------------|
| 1                          | 213               | Cold air weatherization              | 844,243                   | 410,260                         | 49%                                     |
| 1                          | 207               | Cold air weatherization              | 728,352                   | 322,815                         | 44%                                     |
| 1                          | 218               | New Construction Lighting            | 612,219                   | 484,247                         | 79%                                     |
| 2                          | 204               | LED Upgrade                          | 504,092                   | 504,092                         | 100%                                    |
| 2                          | 214               | LED Upgrade                          | 470,079                   | 472,865                         | 101%                                    |
| 2                          | 203               | LED Upgrade                          | 397,939                   | 403,800                         | 101%                                    |
| 3                          | 201               | LED Upgrade                          | 316,728                   | 243,230                         | 77%                                     |
| 3                          | 215               | LED Upgrade                          | 291,741                   | 294,904                         | 101%                                    |
| 3                          | 212               | LED Upgrade                          | 283,108                   | 343,009                         | 121%                                    |
| 3                          | 210               | LED Upgrade                          | 148,846                   | 146,248                         | 98%                                     |
| 4                          | 217               | LED Upgrade                          | 84,021                    | 83,068                          | 99%                                     |
| 4                          | 208               | LED Upgrade                          | 80,158                    | 73,840                          | 92%                                     |
| 4                          | 219               | LED Upgrade                          | 65,654                    | 65,224                          | 99%                                     |
| 4                          | 209               | LED Upgrade                          | 49,087                    | 54,325                          | 111%                                    |
| 4                          | 205               | LED Upgrade                          | 42,666                    | 46,762                          | 110%                                    |
| 4                          | 202               | Compressed air leak audit and repair | 34,001                    | 34,001                          | 100%                                    |
| 5                          | 206               | LED Upgrade                          | 16,333                    | 15,403                          | 94%                                     |
| 5                          | 200               | LED Upgrade                          | 5,164                     | 4,995                           | 97%                                     |
| All Non-Sample<br>Projects |                   |                                      | 10,423,955                | 10,379,361                      | 100%                                    |
| Total                      |                   |                                      | 17,595,760                | 16,579,879                      | 94%                                     |

The realization rate for two of the 20 sample sites was greater than 110%. The factors that resulted in the realization rates were idiosyncratic to the project and are summarized below.

- Project 209 had a higher realization rate for lighting. The ex post savings included the heating cooling interactive effects from the reduced lighting load in the savings calculation for the air conditioned, gas heated manufacturing facility.
- Project 212 had a higher realization rate for lighting. The ex ante savings listed an hours of use value that differed from the ex post hours of use developed through the verification activities.

Four of the 20 samples site had realization rate lower than 90%.

 Projects 207 and 213 for cold storage weatherization applied deemed savings per gap width that were based on infiltration directly from outdoor air to cold storage space, whereas the ex post analysis applied the same savings methodology, but accounting for the warehouse loading dock buffer zone installed location and site operating schedule.

- Project 218 savings calculation for new construction lighting power density applied a codebased allowed wattage to an area that was not illuminated by the installed lighting.
- Project 201 savings calculation for HVAC scheduling applied the reduced operating hours without time of day information, whereas the ex post 8,760 bin analysis considered the time of day.

| Ex Ante<br>Gross kWh<br>Savings | Gross<br>Audited<br>kWh<br>Savings | Gross<br>Verified<br>kWh<br>Savings | Ex Post<br>Gross kWh<br>Savings | Gross<br>Realization<br>Rate |
|---------------------------------|------------------------------------|-------------------------------------|---------------------------------|------------------------------|
| 17,595,760                      | 16,226,554                         | 16,579,879                          | 16,579,879                      | 94%                          |

Table 3-4 Ex Post Annual Gross kWh

### 3.3.2.2. Ex Post Gross kW Reductions

Table 3-5 presents the ex post peak kW reduction for the Work Custom Program during the period January 2022 through December 2022.

Table 3-5 Ex Post Peak kW

| Ex Ante<br>Gross<br>kW<br>Savings | Gross<br>Audited<br>kW<br>Savings | Gross<br>Verified<br>kW<br>Savings | Ex Post<br>Gross<br>kW<br>Savings | Gross<br>Realization<br>Rate |
|-----------------------------------|-----------------------------------|------------------------------------|-----------------------------------|------------------------------|
| 2,803.61                          | 2,704.36                          | 2,813.07                           | 2,813.07                          | 100%                         |

#### 3.4. Estimation of Ex Post Net Savings

3.4.1. Methodology for Estimating Ex Post Net Savings

The procedure for the estimation of program-level kWh energy savings and program-level kW demand reductions was the same as the approach described in Section 2.4.1 of this document on page 14.

3.4.2. Results of Ex Post Net Savings Estimation

Table 3-6 summarizes the net ex post kWh savings and the net ex post kW demand reduction of the Work Custom Program.

| Category                          | kWh         | kW       |
|-----------------------------------|-------------|----------|
| Ex Ante Gross Savings             | 17,595,760  | 2,803.61 |
| Gross Audited Savings             | 16,226,554  | 2,704.36 |
| Gross Verified Savings            | 16,579,879  | 2,813.07 |
| Ex Post Gross Savings             | 16,579,879  | 2,813.07 |
| Gross Realization Rate            | 94%         | 100%     |
| Ex Post Free Ridership            | 1,835,085   | 700.83   |
| Ex Post Non-Participant Spillover | -           | -        |
| Ex Post Participant Spillover     | -           | -        |
| Ex Post Net Savings               | 14,744,794  | 2,112.24 |
| Net-to-Gross Ratio                | 89%         | 75%      |
| Ex Post Net Lifetime Savings      | 183,598,535 | n/a      |

## Table 3-6 Ex Post Net kWh and kW Savings

#### 3.5. Process Evaluation

Methods and findings related to the process evaluation of the Work Custom Program are presented in the Work Prescriptive Chapter in Section 2.5 on page 19.

## 3.6. Findings and Recommendations

Applicable conclusions and recommendations are presented in Section 2.6 on page 25.

## 4. Public Efficient Streetlighting

This chapter presents the results of the impact evaluation of the Public Efficient Streetlighting Program that Indiana Michigan Power (I&M) offered to its local government customers from January 2022 through December 2022.

The objectives of the evaluation are to:

- Assess gross and net energy (kWh) savings and peak demand (kW) reductions that resulted from participation in the program during the program year; and
- Provide recommendations for program improvement as appropriate.

## 4.1. Program Description

To be eligible to participate in the Public Efficient Street Lighting Program, an eligible customer must convert I&M-owned street lighting systems to more efficient LED street lighting. The Program is targeted at local governments and will seek to convert street lighting to LED technology.

The incentive strategy for the program is to apply 100% of the difference between the cost of a LED streetlight and a baseline high pressure sodium equivalent streetlight. Rebates are calculated based on this cost differential and will offset I&M's capital cost of conversion (material and labor) of the LED streetlight fixture to the high-pressure sodium streetlight fixture. As LED streetlight conversions occur, where LED streetlights are placed in-service, I&M will use the rebate from the Public Efficient Street Lighting Program to offset the capital cost of conversion booked in I&M electric plant in-service streetlight accounts.

The program requires pre-approval for any street lighting projects before purchasing and installing equipment. Once applications are approved, they are sent to I&M for approval as the last step in the implementation process.

#### 4.2. Data Collection

## 4.2.1. Verification of Measures

ADM completed a desk review of the Public Efficient Street Lighting Program for the completed projects. For the desk review, ADM reviewed the ex ante savings estimate and applied the correct baseline wattage for the fixtures, and the regional hours of use.

## 4.3. Estimation of Ex Post Gross Savings

The procedure for the estimation of program-level gross kWh energy savings and gross kW demand reductions for the Public Efficient Street Lighting Program.

## 4.3.1. Methodology for Estimating Ex Post Gross Savings

#### 4.3.1.1. Review of Documentation

The process for reviewing program M&V and due diligence procedures for the Public Efficient Street Lighting Program is the same as the approach described in Section 2.3.1.1 of this document on page 9.

#### 4.3.1.2. Procedures for Estimating Measure-Level Gross Energy Savings

Annual energy savings for each sampled streetlight is determined by the following formula:

Annual Energy Savings = kWh<sub>baseline</sub> - kWh<sub>after</sub>

The input values for this formula are determined through the following steps:

- Location-specific dusk to dawn hours (3,934).
- Factoring the dusk to dawn hours by the baseline and post-installation demand to calculate the kWh energy consumption.

#### 4.3.2. Results of Ex Post Gross Savings Estimation

#### 4.3.2.1. Ex Post Gross kWh Savings

The ex post annual gross kWh savings for the Public Efficient Street Lighting Program during the period January 2022 through December 2022 are presented in Table 4-1.

| Ex Ante<br>Gross<br>kWh<br>Savings | Gross<br>Audited<br>kWh<br>Savings | Gross<br>Verified<br>kWh<br>Savings | Ex Post<br>Gross<br>kWh<br>Savings | Gross<br>Realization<br>Rate |
|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|------------------------------|
| 5,966,485                          | 5,966,485                          | 5,966,485                           | 5,966,485                          | 100%                         |

Table 4-1 Ex Post Annual Gross kWh

#### 4.3.2.2. Ex Post Gross kW Reductions

There are no peak kW reductions associated with the streetlighting retrofits.

#### 4.4. Estimation of Ex Post Net Savings

4.4.1. Methodology for Estimating Ex Post Net Energy Savings

The lighting replaced under the streetlighting program is owned and maintained by I&M and municipalities. Consequently, ADM assigned a net-to-gross ratio of 1.0 to the program.

4.4.2. Results of Ex Post Net Savings Estimation

Table 4-2 summarizes the net ex post kWh savings and the net ex post kW demand reduction of the Public Efficient Street Lighting Program.

| Category                      | kWh         | kW  |
|-------------------------------|-------------|-----|
| Ex Ante Gross Savings         | 5,966,485   | -   |
| Gross Audited Savings         | 5,966,485   | -   |
| Gross Verified Savings        | 5,966,485   | _   |
| Ex Post Gross Savings         | 5,966,485   | -   |
| Gross Realization Rate        | 100%        | n/a |
| Ex Post Free Ridership        | 0           | -   |
| Ex Post Non-Participant       |             |     |
| Spillover                     | 0           | -   |
| Ex Post Participant Spillover | 0           | -   |
| Ex Post Net Savings           | 5,966,485   | -   |
| Net-to-Gross Ratio            | 100%        | n/a |
| Ex Post Net Lifetime Savings  | 113,388,979 | n/a |

Table 4-2 Ex Post Net kWh and kW Savings

## 5. Cost Effectiveness Evaluation

The following cost effectiveness tests were performed for each program: Total Resource Cost (TRC) test, Utility Cost Test (UCT), Participant Cost Test (PCT), and Ratepayer Impact Measure (RIM) test. A score above one signifies that, from the perspective of the test, the program benefits were greater than the program costs. The benefits and costs associated with each test are defined in Table 5-1.

|                                  |                                                                                                                                                              | -            |              |              |              | J            | -            |              |              |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                                  | _                                                                                                                                                            | PC           | CT           | UC           | CT           | RL           | М            | TR           | C            |
| Variable                         | Definition                                                                                                                                                   | Benefit      | Cost         | Benefit      | Cost         | Benefit      | Cost         | Benefit      | Cost         |
| Incentives                       | Incentives paid to customers.                                                                                                                                | $\checkmark$ |              |              | $\checkmark$ |              | $\checkmark$ |              |              |
| Program<br>Installation<br>Costs | Installation costs paid by program.                                                                                                                          |              |              |              | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ |
| Bill Savings<br>/Lost<br>Revenue | Reduction in electricity<br>costs faced by customers<br>as a result of<br>implementation of<br>program measures. Equal<br>to revenue lost to the<br>utility. | $\checkmark$ |              |              |              |              | $\checkmark$ |              |              |
| Avoided<br>Energy<br>Costs       | Energy-related costs avoided by utility.                                                                                                                     |              |              | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ |              |
| Avoided<br>Capacity<br>Costs     | Capacity-related costs<br>avoided by utility,<br>including T&D.                                                                                              |              |              | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ |              |
| Incremental<br>Costs             | Incremental costs<br>associated with measure<br>implementation, as<br>compared with what<br>would have been done in<br>absence of program.                   |              | $\checkmark$ |              |              |              |              |              | $\checkmark$ |
| Program<br>Overhead<br>Costs     | Program costs other than incentive or installation costs.                                                                                                    |              |              |              | $\checkmark$ |              | $\checkmark$ |              | $\checkmark$ |

Table 5-1 Summary of Benefits and Costs Included in each Cost Effectiveness Test

#### 5.1. PY2022 Cost Effectiveness Evaluation

Table 5-2 through Table 5-4 summarize key financial benefit and cost inputs for the various tests along as well as the test results for each commercial and industrial program during PY2022.

| Variable                     | PC              | T  |            | U               | JCT |           | R               | IM  |            | TR              | C   |          |
|------------------------------|-----------------|----|------------|-----------------|-----|-----------|-----------------|-----|------------|-----------------|-----|----------|
| variable                     | Benefit         |    | Cost       | Benefit         |     | Cost      | Benefit         |     | Cost       | Benefit         |     | Cost     |
| Incentives                   | \$<br>834,861   |    |            |                 | \$  | 834,861   |                 | \$  | 834,861    |                 |     |          |
| Program Installation Costs   |                 |    |            |                 | \$  | -         |                 | \$  | -          |                 | \$  | -        |
| Bill Savings (NPV)           | \$<br>9,413,880 |    |            |                 |     |           |                 |     |            |                 |     |          |
| Lost Revenue (NPV)           |                 |    |            |                 |     |           |                 | \$  | 13,376,298 |                 |     |          |
| Avoided Energy Costs (NPV)   |                 |    |            | \$<br>4,394,660 |     |           | \$<br>4,394,660 |     |            | \$<br>4,394,660 |     |          |
| Avoided Capacity Costs (NPV) |                 |    |            | \$<br>332,077   |     |           | \$<br>332,077   |     |            | \$<br>332,077   |     |          |
| Avoided T&D Costs (NPV)      |                 |    |            | \$<br>-         |     |           | \$<br>-         |     |            | \$<br>-         |     |          |
| Incremental Costs            |                 | \$ | 1,721,163  |                 |     |           |                 |     |            |                 | \$1 | ,721,163 |
| Program Overhead Costs       |                 |    |            |                 | \$  | 894,861   |                 | \$  | 894,861    |                 | \$  | 894,861  |
| Total Benefits               | \$              |    | 10,248,740 | \$              |     | 4,726,738 | \$              |     | 4,726,738  | \$              | 4   | ,726,738 |
| Total Costs                  | \$              |    | 1,721,163  | \$              |     | 1,729,722 | \$              |     | 15,106,020 | \$              | 2   | ,616,024 |
| Test Score                   | 5.9             | 5  |            | 2               | .73 |           | 0.              | .31 |            | 1.8             | 31  |          |

## Table 5-2 Work Prescriptive Program Cost Test Inputs and Results

## Table 5-3 Work Custom Program Cost Test Inputs and Results

| Variable                     | PC              | Т  |           | l               | JCT |           |           | R   | IM |            | TR              | C    |          |
|------------------------------|-----------------|----|-----------|-----------------|-----|-----------|-----------|-----|----|------------|-----------------|------|----------|
| variable                     | Benefit         |    | Cost      | Benefit         |     | Cost      | Benefi    | ìt  |    | Cost       | Benefit         |      | Cost     |
| Incentives                   | \$<br>907,021   |    |           |                 | \$  | 907,021   |           |     | \$ | 907,021    |                 |      |          |
| Program Installation Costs   |                 |    |           |                 | \$  | -         |           |     | \$ | -          |                 | \$   | -        |
| Bill Savings (NPV)           | \$<br>8,649,437 |    |           |                 |     |           |           |     |    |            |                 |      |          |
| Lost Revenue (NPV)           |                 |    |           |                 |     |           |           |     | \$ | 12,127,886 |                 |      |          |
| Avoided Energy Costs (NPV)   |                 |    |           | \$<br>3,963,447 |     |           | \$ 3,963, | 447 |    |            | \$<br>3,963,447 |      |          |
| Avoided Capacity Costs (NPV) |                 |    |           | \$<br>408,023   |     |           | \$ 408,   | 023 |    |            | \$<br>408,023   |      |          |
| Avoided T&D Costs (NPV)      |                 |    |           | \$<br>-         |     |           | \$        | -   |    |            | \$<br>-         |      |          |
| Incremental Costs            |                 | \$ | 519,705   |                 |     |           |           |     |    |            |                 | \$   | 519,705  |
| Program Overhead Costs       |                 |    |           |                 | \$  | 1,058,042 |           |     | \$ | 1,058,042  |                 | \$ 1 | ,058,042 |
| Total Benefits               | \$              |    | 9,556,458 | \$              |     | 4,371,471 | \$        |     |    | 4,371,471  | \$              | 4    | ,371,471 |
| Total Costs                  | \$              |    | 519,705   | \$              |     | 1,965,062 | \$        |     |    | 14,092,948 | \$              | 1,   | ,577,747 |
| Test Score                   | 18.3            | 9  |           | 2               | .22 |           |           | 0.  | 31 |            | 2.7             | 7    |          |

## Table 5-4 Public Efficient Streetlighting Program Cost Test Inputs and Results

| Variable                     | PC              | Т  |           |       | L       | ICT . |           |         | R     | IM  |           | 1           | RC   |              |
|------------------------------|-----------------|----|-----------|-------|---------|-------|-----------|---------|-------|-----|-----------|-------------|------|--------------|
| variable                     | Benefit         |    | Cost      | B     | enefit  |       | Cost      | Ben     | efit  |     | Cost      | Benefit     |      | Cost         |
| Incentives                   | \$<br>1,918,102 |    |           |       |         | \$    | 1,918,102 |         |       | \$  | 1,918,102 |             |      |              |
| Program Installation Costs   |                 |    |           |       |         | \$    | -         |         |       | \$  | -         |             | •    | \$-          |
| Bill Savings (NPV)           | \$<br>4,242,621 |    |           |       |         |       |           |         |       |     |           |             |      |              |
| Lost Revenue (NPV)           |                 |    |           |       |         |       |           |         |       | \$  | 6,620,456 |             |      |              |
| Avoided Energy Costs (NPV)   |                 |    |           | \$ 2, | 235,455 |       |           | \$ 2,23 | 5,455 |     |           | \$ 2,235,45 | 5    |              |
| Avoided Capacity Costs (NPV) |                 |    |           | \$    | -       |       |           | \$      | -     |     |           | \$-         |      |              |
| Avoided T&D Costs (NPV)      |                 |    |           | \$    | -       |       |           | \$      | -     |     |           | \$ -        |      |              |
| Incremental Costs            |                 | \$ | 2,580,129 |       |         |       |           |         |       |     |           |             |      | \$ 2,580,129 |
| Program Overhead Costs       |                 |    |           |       |         | \$    | 342,360   |         |       | \$  | 342,360   |             |      | \$ 342,360   |
| Total Benefits               | \$              |    | 6,160,723 | \$    |         |       | 2,235,455 | \$      |       |     | 2,235,455 | \$          |      | 2,235,455    |
| Total Costs                  | \$              |    | 2,580,129 | \$    |         |       | 2,260,462 | \$      |       |     | 8,880,918 | \$          |      | 2,922,489    |
| Test Score                   | 2.3             | 9  |           |       | 0       | .99   |           |         | 0     | .25 |           | (           | ).76 |              |

#### 5.2. PY2021 - PY2022 Cost Effectiveness Evaluation

Cost effectiveness of programs across PY2021 and PY2012 was also evaluated. The test results for each program are presented in Table 5-5.

| Program                         | Program<br>Administrator<br>Cost Test (aka<br>USCRT, or<br>UCT) | Total<br>Resource Cost<br>Test | Ratepayer<br>Impact<br>Measure | Participant<br>Cost Test |
|---------------------------------|-----------------------------------------------------------------|--------------------------------|--------------------------------|--------------------------|
| Work Prescriptive               | 2.16                                                            | 1.46                           | 0.31                           | 5.26                     |
| Work Custom                     | 1.65                                                            | 1.90                           | 0.30                           | 12.05                    |
| Public Efficient Streetlighting | 1.23                                                            | 0.83                           | 0.26                           | 2.40                     |
| C&I Portfolio Total             | 1.72                                                            | 1.43                           | 0.30                           | 5.39                     |

Table 5-5 Summary of PY2021 - PY2022 Benefit-Cost Ratios

Table 5-6 through Table 5-8 summarize key financial benefit and cost inputs for the various tests along as well as the test results for each commercial and industrial program during PY2021 - PY2022.

Table 5-6 PY2021 - PY2022 Work Prescriptive Program Cost Test Inputs and Results

| Variable                     | PC            | T            | U            | CT           | R            | IM            | TI           | RC           |
|------------------------------|---------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| variable                     | Benefit       | Cost         | Benefit      | Cost         | Benefit      | Cost          | Benefit      | Cost         |
| Incentives                   | \$ 1,528,255  |              |              | \$ 1,528,255 |              | \$ 1,528,255  |              |              |
| Program Installation Costs   |               |              |              | \$-          |              | \$-           |              | \$ -         |
| Bill Savings (NPV)           | \$ 15,445,842 |              |              |              |              |               |              |              |
| Lost Revenue (NPV)           |               |              |              |              |              | \$ 21,614,863 |              |              |
| Avoided Energy Costs (NPV)   |               |              | \$ 6,997,490 |              | \$ 6,997,490 |               | \$ 6,997,490 |              |
| Avoided Capacity Costs (NPV) |               |              | \$ 679,336   |              | \$ 679,336   |               | \$ 679,336   |              |
| Avoided T&D Costs (NPV)      |               |              | \$ -         |              | \$ -         |               | \$ -         |              |
| Incremental Costs            |               | \$ 3,229,533 |              |              |              |               |              | \$ 3,229,533 |
| Program Overhead Costs       |               |              |              | \$ 2,022,413 |              | \$ 2,022,413  |              | \$ 2,022,413 |
| Total Benefits               | \$            | 16,974,097   | \$           | 7,676,826    | \$           | 7,676,826     | \$           | 7,676,826    |
| Total Costs                  | \$            | 3,229,533    | \$           | 3,550,669    | \$           | 25,165,531    | \$           | 5,251,946    |
| Test Score                   | 5.2           | 6            | 2.1          | 16           | 0.           | .31           | 1.4          | 46           |

Table 5-7 PY2021 - PY2022 Work Custom Program Cost Test Inputs and Results

| Variable                     | PC            | T            | U            | CT           | R            | PIM .         | TI           | RC           |
|------------------------------|---------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|
| variable                     | Benefit       | Cost         | Benefit      | Cost         | Benefit      | Cost          | Benefit      | Cost         |
| Incentives                   | \$ 2,192,345  |              |              | \$ 2,192,345 |              | \$ 2,192,345  |              |              |
| Program Installation Costs   |               |              |              | \$-          |              | \$ -          |              | \$ -         |
| Bill Savings (NPV)           | \$ 16,434,070 |              |              |              |              |               |              |              |
| Lost Revenue (NPV)           |               |              |              |              |              | \$ 22,467,144 |              |              |
| Avoided Energy Costs (NPV)   |               |              | \$ 7,441,020 |              | \$ 7,441,020 |               | \$ 7,441,020 |              |
| Avoided Capacity Costs (NPV) |               |              | \$ 840,930   |              | \$ 840,930   |               | \$ 840,930   |              |
| Avoided T&D Costs (NPV)      |               |              | \$ -         |              | \$ -         |               | \$ -         |              |
| Incremental Costs            |               | \$ 1,545,237 |              |              |              |               |              | \$ 1,545,237 |
| Program Overhead Costs       |               |              |              | \$ 2,814,666 |              | \$ 2,814,666  |              | \$ 2,814,666 |
| Total Benefits               | \$            | 18,626,414   | \$           | 8,281,950    | \$           | 8,281,950     | \$           | 8,281,950    |
| Total Costs                  | \$            | 1,545,237    | \$           | 5,007,010    | \$           | 27,474,154    | \$           | 4,359,903    |
| Test Score                   | 12.0          | )5           | 1.6          | 65           | 0            | .30           | 1.           | 90           |

| Variable                     | P            | PCT          |              | CT           | R            | 2IM          | TRC          |              |
|------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| variable                     | Benefit      | Cost         | Benefit      | Cost         | Benefit      | Cost         | Benefit      | Cost         |
| Incentives                   | \$ 2,083,946 |              |              | \$ 2,083,946 |              | \$ 2,083,946 |              |              |
| Program Installation Costs   |              |              |              | \$ -         |              | \$ -         |              | \$ -         |
| Bill Savings (NPV)           | \$ 5,829,529 |              |              |              |              |              |              |              |
| Lost Revenue (NPV)           |              |              |              |              |              | \$ 9,091,842 |              |              |
| Avoided Energy Costs (NPV)   |              |              | \$ 3,049,085 |              | \$ 3,049,085 |              | \$ 3,049,085 |              |
| Avoided Capacity Costs (NPV) |              |              | \$ -         |              | \$ -         |              | \$ -         |              |
| Avoided T&D Costs (NPV)      |              |              | \$-          |              | \$ -         |              | \$-          |              |
| Incremental Costs            |              | \$ 3,304,141 |              |              |              |              |              | \$ 3,304,141 |
| Program Overhead Costs       |              |              |              | \$ 391,514   |              | \$ 391,514   |              | \$ 391,514   |
| Total Benefits               | \$           | 7,913,475    | \$           | 3,049,085    | \$           | 3,049,085    | \$           | 3,049,085    |
| Total Costs                  | \$           | 3,304,141    | \$           | 2,475,460    | \$           | 11,567,303   | \$           | 3,695,655    |
| Test Score                   | 2.4          | 40           | 1.2          | 23           | 0            | .26          | 0.           | 83           |

# 2022 Indiana Commercial & Industrial Portfolio EM&V Report

Volume II of II

Prepared for: Indiana Michigan Power

March 2023

Prepared by:



3239 Ramos Circle Sacramento, CA95827 916.363.8383

## Table of Contents

| 1. | Introduction 1                                        |
|----|-------------------------------------------------------|
| 2. | Site-Level Estimation of Ex Post Gross Energy Impacts |
| 3. | C&I Participant Survey Instrument                     |
| 4. | C&I Participant Survey Results                        |

## 1. Introduction

Under contract with the Indiana Michigan Power (I&M), ADM Associates, Inc., (ADM) performed evaluation, measurement and verification (EM&V) activities to confirm the energy savings (kWh) and demand reduction (kW) realized through the demand side management programs that I&M implemented in Indiana in 2022.

This report is divided into two volumes providing information on the impact, process, and costeffectiveness evaluation of the I&M portfolio of commercial and industrial programs implemented in Indiana during the 2022 program year. Volume II contains chapters presenting detailed information regarding evaluation methodologies, data collection instruments, and evaluation results. Volume II is organized as follows:

- Chapter 2: Site-Level Estimation of Ex Post Gross Energy Impacts
- Chapter 3: C&I Participant Survey Instrument
- Chapter 4: C&I Participant Survey Results

See report Volume I for narrative and summary information pertaining to the evaluation methods and results.

## 2. Site-Level Estimation of Ex Post Gross Energy Impacts

#### Project Number: 100 and 200

#### **Executive Summary**

Under projects 100 and 200, a program participant received prescriptive and custom incentives from I&M Power for retrofitting existing lighting with LED lamps and fixtures.

The verified annual energy savings are 485,775 kWh with ex post peak demand reduction of 139.83 kW and the gross energy savings realization rate is 106%.

#### **Project Description**

The participant replaced T8 linear fluorescent lamps, metal halide lamp/fixtures, high pressure sodium lamp/fixtures and halogen lamps with LED lamps and LED fixtures.

#### **Measurement and Verification Effort**

To verify the project savings, ADM staff reviewed project documentation, baseline wattage, and post-retrofit connected load. In addition, ADM collected the detailed light survey by the applicant and compared it with the hours to the usage area.

Lighting energy savings are calculated as:

$$kWh_{savings} = \sum_{Area} [HCIF \times Hours \times (N_{base} \times W_{base} - N_{as-built} \times W_{as-built})/1000]$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings    |
|------------------------|----------------------------|
| Ν                      | = Number of fixtures       |
| W                      | = Wattage of each fixture  |
| Hours                  | = Lighting operating hours |
| HCIF                   | = HVAC interactive factor  |

The custom lighting retrofits are summarized as:

| Custom L | lighting | Energy | Savings | Calculations |
|----------|----------|--------|---------|--------------|
|----------|----------|--------|---------|--------------|

| Measure              | Quantity (Fixtures) |           | Total Wattage |           | Hours<br>Range | Heating<br>Cooling<br>Interaction | Ex Ante<br>Annual<br>kWh | Ex Post<br>Gross<br>kWh | Gross<br>Realization |
|----------------------|---------------------|-----------|---------------|-----------|----------------|-----------------------------------|--------------------------|-------------------------|----------------------|
|                      | Baseline            | Efficient | Baseline      | Efficient | Kunge          | Factor                            | Savings                  | Savings                 | Rate                 |
| Custom LED Lamps and | 1 969               | 4,868     | 100 525       | 20.976    | 100 -          | 1.0 -                             | 397,939                  | 402 800                 | 101%                 |
| Fixtures 4,868       | 4,808 15            | 190,525   | 30,876        | 8760      | 1.133          | 397,939                           | 403,800                  | 10170                   |                      |
| Total                |                     |           |               |           |                |                                   | 397,939                  | 403,880                 | 101%                 |

The lighting prescriptive measure savings inputs are summarized in the following table. Hours of use was determined from the Custom measure detailed lighting survey by room and applied to their respective areas.

| Measure                  | Qua<br>Base | ntity<br>Efficient |     |       | Hours | Heating<br>Cooling<br>Interaction | Ex Ante<br>Annual<br>kWh | Ex Post<br>Gross<br>kWh | Gross<br>Realizatio<br>n Rate |
|--------------------------|-------------|--------------------|-----|-------|-------|-----------------------------------|--------------------------|-------------------------|-------------------------------|
|                          |             |                    |     |       |       | Factor                            | Savings                  | Savings                 | n nano                        |
| Exterior HPS 175W to LED | 7           | 7                  | 175 | 49    | 4,380 | 1.13                              | 2,419                    | 4,377                   | 181%                          |
| Exterior HPS400W to LED  | 2           | 2                  | 460 | 109   | 4,380 | 1.13                              | 2,160                    | 3,484                   | 161%                          |
| HPS300W to LED           | 1           | 1                  | 295 | 63    | 4,380 | 1.13                              | 626                      | 1,151                   | 184%                          |
| 4L T8 32W to LED         | 326         | 326                | 59  | 27    | 3,219 | 1.13                              | 26,758                   | 38,051                  | 142%                          |
| 1L T8 32W to LED         | 7           | 7                  | 32  | 14    | 3,219 | 1.13                              | 575                      | 460                     | 80%                           |
| 4L T8 32W to LED         | 20          | 10                 | 59  | 53    | 3,219 | 1.13                              | 821                      | 2,371                   | 289%                          |
| 4L T8 32W to LED         | 1           | 1                  | 59  | 14    | 3,219 | 1.13                              | 82                       | 164                     | 200%                          |
| 3L T8 Ubend to LED       | 12          | 12                 | 89  | 26    | 3,219 | 1.13                              | 1,452                    | 2,758                   | 190%                          |
| MH 250W to LED kit       | 9           | 9                  | 288 | 80    | 3,219 | 1.13                              | 7,698                    | 6,828                   | 89%                           |
| MH400W to LED            | 4           | 4                  | 460 | 120   | 3,219 | 1.13                              | 5,184                    | 4,961                   | 96%                           |
| Halogen MR15 to LED      | 71          | 71                 | 45  | 6     | 3,219 | 1.13                              | 3,763                    | 10,100                  | 268%                          |
| Halogen MR15 to LED      | 8           | 8                  | 45  | 6     | 3,219 | 1.13                              | 424                      | 1,138                   | 268%                          |
| Inc Exit sign to LED     | 5           | 5                  | 14  | 5     | 8,760 | 1.13                              | 415                      | 83                      | 20%                           |
| Occupancy sensors        | 22          | 22                 | -   | 1,508 | 3,219 | 1.13                              | 6,708                    | 6,050                   | 90%                           |
| Total                    |             |                    |     |       |       |                                   | 59,085                   | 81,975                  | 139%                          |

Prescriptive Lighting Energy Savings Calculations

#### Results

| Realized Gross Savings |         |               |                     |              |  |  |  |  |  |  |
|------------------------|---------|---------------|---------------------|--------------|--|--|--|--|--|--|
| Measure Category       |         | Realized Peak |                     |              |  |  |  |  |  |  |
|                        | Ex Ante | Ex Post       | Realization<br>Rate | kW Reduction |  |  |  |  |  |  |
| Prescriptive Lighting  | 59,085  | 81,975        | 139%                | 15.60        |  |  |  |  |  |  |
| Custom Lighting        | 397,939 | 403,800       | 101%                | 124.24       |  |  |  |  |  |  |
| Total                  | 457,024 | 485,775       | 106%                | 139.83       |  |  |  |  |  |  |

The realized annual energy savings are 485,775 kWh with a gross energy savings realization rate of 106%. The difference between the ex ante and ex post savings estimates is due to the following factors:

• The deemed savings for the prescriptive measures underestimate the measure savings as determined by the existing wattage, installed wattage, hours of use, and waste heat factor. The as-installed lighting survey from the applicant also calculated the expected savings with similar values to the ex post savings.

- The ex post custom savings were higher with a waste heat factor based on the location, the HVAC type, and building type as provided by the *IN TRM* with a value of 0.133. The ex ante savings references the same 1.115 value for all locations, building types, and HVAC types.
- The peak demand ex post savings of 139.83 kW was less than the ex ante value of 191.03, as the ex ante utilized a 1.0 CF for all measures regardless of the operating hours.

#### Project Number 107 and 205

#### **Executive Summary**

Under project 107 and 205, a program participant received prescriptive and custom incentives from I&M for the installation and retrofit of energy efficient lighting. The ex post annual energy savings are 70,409 kWh with ex post peak demand reduction of 16.52 kW. The project energy savings gross realization rate is 103%.

#### **Project Description**

The customer received prescriptive incentives for replacing T8 and T5 fluorescent lighting, HPS fixtures, and CFL lamps with LED lamps and fixtures.

#### **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| HCIF <sub>e</sub>      | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The tables below present ex ante and ex post energy savings verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project.

| Measure                               | Quantity (Fixtures) |           | Wattage  |           | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |  |
|---------------------------------------|---------------------|-----------|----------|-----------|--------|-----------------------|-----------------------|---------------|----------------------|--|
| measure                               | Baseline            | Efficient | Baseline | Efficient | 110415 | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |  |
| 3L T8 32W to LED 2x4<br>Troffer       | 10                  | 10        | 89       | 32        | 3640   | 1.096                 | 3,020                 | 2,274         | 75%                  |  |
| 1L T8 32W to LED 8'<br>Lamp           | 6                   | 6         | 31       | 15        | 3640   | 1.096                 | 492                   | 383           | 78%                  |  |
| 2L Ubend T8 to LED 2x2<br>Troffer     | 3                   | 3         | 55       | 30        | 3640   | 1.096                 | 363                   | 299           | 82%                  |  |
| 6L T5HO 54W to LED<br>High Bay        | 8                   | 8         | 351      | 154       | 3640   | 1.096                 | 2,904                 | 6,287         | 217%                 |  |
| HPS 458W to Exterior<br>LED Wall Pack | 1                   | 1         | 458      | 80        | 2780   | 1                     | 1,080                 | 1,051         | 97%                  |  |
| 4L T8 32W to LED 2x4<br>Troffer       | 21                  | 21        | 112      | 38.9      | 3640   | 1.096                 | 9,261                 | 6,124         | 66%                  |  |
| 4L T8 32W to LED 2x4<br>Troffer       | 6                   | 6         | 112      | 32        | 3640   | 1.096                 | 2,406                 | 1,915         | 80%                  |  |
| HPS 458W to Exterior<br>LED Wall Pack | 4                   | 4         | 458      | 100       | 2780   | 1                     | 4,320                 | 3,981         | 92%                  |  |
| 2L Ubend T8 to LED 2x4<br>Troffer     | 10                  | 10        | 59       | 32        | 3640   | 1.096                 | 1,210                 | 1,077         | 89%                  |  |
| 1L T8 32W to LED 8'<br>Lamp           | 4                   | 4         | 31       | 15        | 3640   | 1.096                 | 328                   | 255           | 78%                  |  |
| Total                                 |                     |           |          |           |        |                       | 25,384                | 23,647        | 93%                  |  |

## Prescriptive Lighting Energy Savings Calculations

## Custom Lighting Energy Savings Calculations

| Measure                         | Quantity (Fixtures) |           | Wattage  |           | Hours | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|---------------------------------|---------------------|-----------|----------|-----------|-------|-----------------------|-----------------------|---------------|----------------------|
|                                 | Baseline            | Efficient | Baseline | Efficient | nours | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| 6L T5HO 54W to LED<br>High Bay  | 50                  | 50        | 351      | 183       | 3640  | 1.096                 | 42,666                | 33,511        | 110%                 |
| 2L 8' T12 75W to LED 8'<br>Lamp | 25                  | 34        | 173      | 61        | 3640  | 1.096                 |                       | 8,980         |                      |
| 4L T8 32W to LED Troffer        | 11                  | 2         | 112      | 88.8      | 3640  | 1.096                 |                       | 4,206         |                      |
| CFL 26W to LED A19              | 1                   | 1         | 26       | 10        | 3640  | 1.096                 |                       | 64            |                      |
| Total                           |                     |           |          |           |       |                       | 42,666                | 46,762        | 110%                 |

#### Results

#### Gross Energy Impacts Summary

|                       |         | Ex Post |                     |                     |
|-----------------------|---------|---------|---------------------|---------------------|
| Measure Category      | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |
| Prescriptive Lighting | 25,384  | 23,647  | 93%                 | 4.70                |
| Custom Lighting       | 42,666  | 46,762  | 110%                | 11.82               |
| Total                 | 68,050  | 70,409  | 103%                | 16.52               |

The ex post annual energy savings are 70,409 kWh and the ex post peak demand reduction is 16.52 kW. The energy gross realization rate is 103%. The following items impacted the ex post savings:

- The ex post custom energy savings included the waste heat factor for a gas heat, airconditioned retail building, the ex ante did not include the factor.
- The ex post prescriptive energy savings were less than the deemed prescriptive savings, mostly for the measure with fluorescent tube lighting replaced by LED troffers.

#### Project Number: 108 and 206

#### **Executive Summary**

Under project 108 and 206, a program participant received prescriptive and custom incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 69,847 kWh with ex post peak demand reduction of 8.58 kW. The combined project energy savings gross realization rate is 130%.

#### **Project Description**

The customer received prescriptive incentives for replacing incandescent lamps, metal halide lamps, and T12 lighting troffers with LED A-lamps, LED recessed ceiling fixtures, and LED 2x4 troffers.

#### **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_{e})$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| HCIF <sub>e</sub>      | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The tables below present ex ante and ex post energy savings verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project.

Prescriptive Lighting Energy Savings Calculations

## Indiana C&I Portfolio

## Exhibit B: 2022 I&M Indiana C&I Portfolio EM&V Report 2022 EM&V Report

| Measure                          | Quantity (Fixtures) |           | Wattage  |           | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|----------------------------------|---------------------|-----------|----------|-----------|--------|-----------------------|-----------------------|---------------|----------------------|
| measure                          | Baseline            | Efficient | Baseline | Efficient | 110015 | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| 4L T12 34W to LED 2x4<br>Troffer | 59                  | 59        | 112      | 40        | 8760   | 1.115                 | 26,019                | 41,492        | 159%                 |
| 4L T12 34W to LED 2x4<br>Troffer | 15                  | 15        | 112      | 40        | 4380   | 1.115                 | 6,615                 | 5,274         | 80%                  |
| 4L T12 34W to LED 2x4<br>Troffer | 3                   | 3         | 112      | 42        | 8760   | 1.115                 | 1,323                 | 2,051         | 155%                 |
| 4L T12 34W to LED 2x4<br>Troffer | 8                   | 8         | 112      | 40        | 8760   | 1.115                 | 3,528                 | 5,626         | 159%                 |
| Total                            |                     |           |          |           |        |                       | 37,485                | 54,443        | 145%                 |

#### Custom Lighting Energy Savings Calculations

| Measure                          | Quantity | (Fixtures) | Wattage  |           | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross                             | Gross<br>Realization |
|----------------------------------|----------|------------|----------|-----------|--------|-----------------------|-----------------------|-------------------------------------------|----------------------|
| meusure                          | Baseline | Efficient  | Baseline | Efficient | 1100/5 | Interaction<br>Factor | Savings               | kWh Savings                               | Rate                 |
| MH175W to LED A21<br>Lamp        | 5        | 15         | 208      | 20        | 4380   | 1.115                 |                       | 4,591                                     |                      |
| Inc 2L 60W to LED<br>Recessed    | 4        | 4          | 86       | 26        | 8760   | 760 1.115             |                       | 2,344                                     |                      |
| Inc 2L 60W to LED 2x4<br>Troffer | 4        | 4          | 86       | 40        | 4380   | 1.115                 | 16,333                | 899                                       | 94%                  |
| MH175W to LED A23                | 10       | 10         | 208      | 25        | 8760   | 1.115                 |                       | 7.520                                     |                      |
| Additional lamps                 | 0        | 5          | 0        | 40        | 8760   | 1.115                 |                       | 33     2,344       33     899       7,520 |                      |
| Total                            |          |            |          |           |        |                       | 16,333                | 15,403                                    | 94%                  |

#### Results

## Gross Energy Impacts Summary

|                       |         | kWh Savings |                     | Ex Post             |
|-----------------------|---------|-------------|---------------------|---------------------|
| Measure Category      | Ex Ante | Ex Post     | Realization<br>Rate | Gross kW<br>Savings |
| Prescriptive Lighting | 37,485  | 54,443      | 145%                | 5.72                |
| Custom Lighting       | 16,333  | 15,403      | 94%                 | 2.86                |
| Total                 | 53,818  | 69,847      | 130%                | 8.58                |

The ex post annual energy savings are 69,847 kWh and the ex post peak demand reduction is 8.52 kW. The energy gross realization rate is 130%. The following items impacted the ex post savings:

- The ex post custom energy considered the EISA efficacy standard for GSL lighting and set the incandescent baseline wattage to the lumen equivalent wattage.
- The ex post prescriptive energy savings were more than the deemed prescriptive savings, even after setting the T12 baseline wattage to the EISA efficacy lumen equivalent wattage from 144W to 112W for a T8 fixture.

#### Project Number: 109 and 208

#### **Executive Summary**

Under project 109 and 208, a program participant received prescriptive and custom incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 430,253 kWh with ex post peak demand reduction of 55.35 kW. The combined project energy savings gross realization rate is 146%.

#### **Project Description**

The customer received prescriptive incentives for replacing incandescent lamps, CFL lamps, HID fixtures, and T8 lamps/fixtures with (24) LED A21-lamps, (158) LED recessed ceiling fixtures, (17) LED fixtures, and (2302) LED linear tubes.

#### **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_{e})$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| Ν                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| $HCIF_{e}$             | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The tables below present ex ante and ex post energy savings verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project.

| Measure                             | Quantity (Fixtures) |           | Wat      | Wattage   |       | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|-------------------------------------|---------------------|-----------|----------|-----------|-------|-----------------------|-----------------------|---------------|----------------------|
| measure                             | Baseline            | Efficient | Baseline | Efficient | Hours | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| 1L T8 32W to LED B Type<br>4' Tube  | 1998                | 1998      | 31       | 10.5      | 6,648 | 1.115                 | 163,836               | 303,609       | 185%                 |
| MH 400W to LED Fixture              | 17                  | 17        | 400      | 114       | 4,380 | 1.115                 | 22,032                | 23,745        | 108%                 |
| MH 70W to LED Recessed              | 13                  | 13        | 70       | 17        | 4,380 | 1.115                 | 4,498                 | 3,365         | 75%                  |
| MV 75W to LED Recessed              | 17                  | 17        | 75       | 28        | 4,380 | 1.115                 | 5,882                 | 3,902         | 66%                  |
| MV 75W to LED Recessed              | 6                   | 6         | 75       | 30        | 4,380 | 1.115                 | 2,076                 | 1,319         | 64%                  |
| 1L T8 32W to LED 4'<br>Ubend Tube   | 148                 | 148       | 32       | 21        | 6,648 | 1.115                 | 12,136                | 12,068        | 99%                  |
| 1L T12 40W to LED B<br>Type 4' Tube | 44                  | 44        | 32       | 10.5      | 6,648 | 1.115                 | 3,608                 | 7,012         | 194%                 |
| 1L T12 48W to LED B<br>Type 4' Tube | 8                   | 8         | 34       | 10.5      | 6,648 | 1.115                 | 656                   | 1,394         | 212%                 |
| Total                               |                     |           |          |           |       |                       | 214,724               | 356,413       | 166%                 |

## Prescriptive Lighting Energy Savings Calculations

## Custom Lighting Energy Savings Calculations

| Measure                               | Quantity | (Fixtures) | Wat      | tage      | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross                                                                                                                          | Gross<br>Realization |
|---------------------------------------|----------|------------|----------|-----------|--------|-----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Meusure                               | Baseline | Efficient  | Baseline | Efficient | 110415 | Interaction<br>Factor | Savings               | <i>Ex Post Gross</i><br><i>kWh Savings</i><br>28,892<br>1,905<br>3,653<br>1,055<br>4,532<br>4,532<br>17,347<br>4,835<br>9,786<br>1,836 | Rate                 |
| CFL 42W to LED Recessed               | 102      | 102        | 44       | 15        | 8,760  | 1.115                 |                       | 28,892                                                                                                                                 |                      |
| CFL 57W to LED Recessed               | 5        | 5          | 60       | 21        | 8,760  | 1.115                 |                       | 1,905                                                                                                                                  |                      |
| 1L 2' T8 17W to LED B<br>Type 2' Tube | 34       | 34         | 18       | 7         | 8,760  | 1.115                 |                       | 3,653                                                                                                                                  |                      |
| 2L 2' T8 17W to LED B<br>Type 2' Tube | 6        | 6          | 32       | 14        | 8,760  | 1.115                 |                       | 1,055                                                                                                                                  |                      |
| 3L 2' T8 17W to LED B<br>Type 2' Tube | 16       | 16         | 50       | 21        | 8,760  | 1.115                 | 80,158                | 4,532                                                                                                                                  | 93%                  |
| 4L 2' T8 17W to LED B<br>Type 2' Tube | 48       | 48         | 65       | 28        | 8,760  | 1.115                 |                       | 17,347                                                                                                                                 |                      |
| Can Inc GSL 60W to LED<br>Recessed    | 15       | 15         | 43       | 10        | 8,760  | 1.115                 |                       | 4,835                                                                                                                                  |                      |
| MH 70W to LED A21                     | 26       | 22         | 95       | 16.5      | 4,300  | 1.115                 |                       | 9,786                                                                                                                                  |                      |
| MH 175W to LED A21                    | 2        | 2          | 208      | 16.5      | 4,300  | 1.115                 |                       | 1,836                                                                                                                                  |                      |
| Total                                 |          |            |          |           |        |                       | 80,158                | 73,840                                                                                                                                 | 93%                  |

#### Results

|                       |         |         | •                   |                     |
|-----------------------|---------|---------|---------------------|---------------------|
|                       |         | Ex Post |                     |                     |
| Measure Category      | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |
| Prescriptive Lighting | 214,724 | 356,413 | 166%                | 47.12               |
| Custom Lighting       | 80,158  | 73,840  | 93%                 | 8.23                |
| Total                 | 294,882 | 430,253 | 146%                | 55.35               |

Gross Energy Impacts Summary

The ex post annual energy savings are 430,253 kWh and the ex post peak demand reduction is 55.35 kW. The energy gross realization rate is 146%. The following items impacted the ex post savings:

- The ex post custom energy considered the EISA efficacy standard for GSL lighting and set the incandescent baseline wattage to the lumen equivalent wattage.
- The ex post custom energy savings reviewed the lighting survey, aligned to the invoices and determined that 28 Metal Halides were replaced by 28 LED screw in A21 lamps. The application may have misaligned the items 8, 9, and 10 without indicating the corresponding replacement quantity.
- Although, the ex post prescriptive savings were higher than the ex ante, the ex post hours determined by the phone interview resulted in a decrease in lighting hours from the 8,760 indicated on the application. The areas noted to have fewer lighting hours were administrative areas, storage areas, and some private offices.

#### Project Number: 110 and 210

#### **Executive Summary**

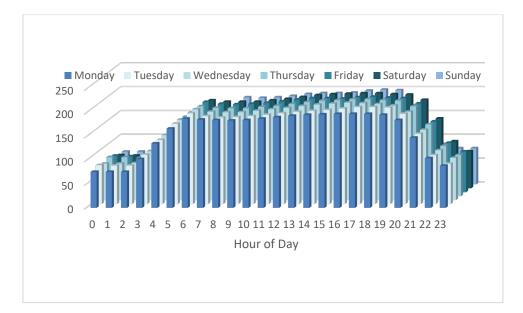
Under projects 110 and 210, a program participant received prescriptive and custom incentives from I&M for installation and retrofit of energy-efficient lighting. The ex post annual energy savings are 297,691 kWh with ex post peak demand reduction of 21.43 kW. The combined project energy savings gross realization rate is 95%.

#### **Project Description**

The customer received prescriptive incentives for replacing metal halide fixtures and T8 linear fluorescent lamps/fixtures with (145) LED high bay fixtures, (26) LED wall packs, (3) LED pole fixtures, and (380) LED troffers.

#### **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation by obtaining the lightning schedule, verifying hours with AMI billing data and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:


$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_{e})$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| HCIF <sub>e</sub>      | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The AMI interval billing data supported the lighting schedules that ranged between from 5,450 to 6,500 hours per year, along with dusk to dawn light schedules.



AMI Interval Billing Data by Day and Hour

The tables below present ex ante and ex post energy savings verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project.

| Measure                        | Quantity | (Fixtures) | Wat      | tage      | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | <i>Ex Post Gross</i><br><i>kWh Savings</i><br>58,512<br>2,847<br>4,087<br>28,667<br>20,236<br>17,240<br>16,403<br>2,523 | Gross<br>Realization |
|--------------------------------|----------|------------|----------|-----------|--------|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------|
| nicusure                       | Baseline | Efficient  | Baseline | Efficient | 110415 | Interaction<br>Factor | Savings               | kWh Savings                                                                                                             | Rate                 |
| MH 400W to LED High<br>Bay     | 73       | 73         | 458      | 92        | 2,190  | 1.0                   | 94,608                | 58,512                                                                                                                  | 62%                  |
| MH 400W to LED Wall<br>Pack    | 2        | 2          | 458      | 133       | 4,380  | 1.0                   | 2,592                 | 2,847                                                                                                                   | 110%                 |
| MH 400W to LED Pole<br>Fixture | 3        | 3          | 458      | 147       | 4,380  | 1.0                   | 3,240                 | 4,087                                                                                                                   | 126%                 |
| MH 400W to LED High<br>Bay     | 17       | 17         | 458      | 73        | 4,380  | 1.0                   | 18,360                | 28,667                                                                                                                  | 156%                 |
| MH 400W to LED High<br>Bay     | 12       | 12         | 458      | 73        | 4,380  | 1.0                   | 12,960                | 20,236                                                                                                                  | 156%                 |
| MH 400W to LED Wall<br>Wash    | 24       | 24         | 208      | 44        | 4,380  | 1.0                   | 8,294                 | 17,240                                                                                                                  | 208%                 |
| MH 1000W to LED High<br>Bay    | 7        | 7          | 1080     | 545       | 4,380  | 1.0                   | 21,168                | 16,403                                                                                                                  | 77%                  |
| MH 400W to LED High<br>Bay     | 3        | 3          | 458      | 266       | 4,380  | 1.0                   | 3,240                 | 2,523                                                                                                                   | 78%                  |
| MH 400W to LED High<br>Bay     | 1        | 1          | 458      | 246       | 4,380  | 1.0                   | 1,080                 | 929                                                                                                                     | 86%                  |
| Total                          |          |            |          |           |        |                       | 165,542               | 151,443                                                                                                                 | 91%                  |

| Measure                            | Quantity (Fixtures) |           | Wat      | Wattage   |       | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|------------------------------------|---------------------|-----------|----------|-----------|-------|-----------------------|-----------------------|---------------|----------------------|
| measure                            | Baseline            | Efficient | Baseline | Efficient | Hours | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| 2L 8' T8HO 86W to LED<br>High Bay  | 40                  | 32        | 160      | 94.3      | 6,110 | 1.126                 | 23,684                | 23,270        | 98%                  |
| 2L 4' T8 32W to LED 2x4<br>Troffer | 435                 | 380       | 59       | 20.5      | 6,110 | 1.126                 | 125,162               | 122,977       | 98%                  |
| Total                              |                     |           |          |           |       |                       | 148,846               | 146,248       | 98%                  |

Custom Lighting Energy Savings Calculations

#### Results

|                       |         | kWh Savings |                     |                     |  |  |  |
|-----------------------|---------|-------------|---------------------|---------------------|--|--|--|
| Measure Category      | Ex Ante | Ex Post     | Realization<br>Rate | Gross kW<br>Savings |  |  |  |
| Prescriptive Lighting | 165,542 | 151,443     | 91%                 | 0.00                |  |  |  |
| Custom Lighting       | 148,846 | 146,248     | 98%                 | 21.43               |  |  |  |
| Total                 | 314,388 | 297,691     | 95%                 | 21.43               |  |  |  |

Gross Energy Impacts Summary

The ex post annual energy savings are 297,691 kWh and the ex post peak demand reduction is 21.43 kW. The energy gross realization rate is 95%. The following items impacted the ex post savings:

- The ex post custom energy considered a *IN TRM* based waste heat factor for a big box retail store, whereas as the ex ante utilized a weighted building type factor.
- The ex post prescriptive savings were less than the deemed savings per unit for some of the lighting (73 fixtures) in the outdoor retail areas. Although the applicant hours and verified hours with the site contact were both equal to 2,190 hours, the deemed value may be based on a higher hours of use.

#### Project Number 114 and 212

#### **Executive Summary**

Under projects 114 and 212, a program participant received prescriptive and custom incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 382,365 kWh with ex post peak demand reduction of 91.83 kW. The combined project energy savings gross realization rate is 65%.

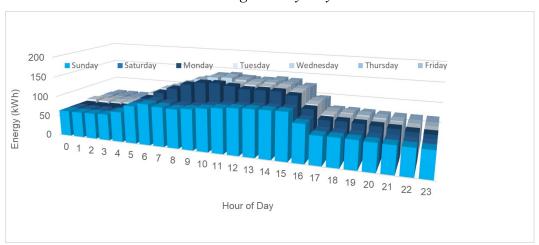
#### **Project Description**

The customer received prescriptive incentives replacing T8 linear fluorescent fixtures, halogen lamps, metal halide fixtures, and incandescent exit signs with (738) LED panels, (19) LED recessed fixtures, (74) LED wall packs/linear fixtures, and (31) LED exit signs.

Also, (140) occupancy sensors were installed to control interior lighting.

#### **Measurement and Verification Effort**

Through email exchanges with the site, ADM staff verified the original lighting survey, reviewed the AMI metered hours with the site to assign usage areas, and verified the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:


$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| $HCIF_{e}$             | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The AMI billing data indicated the school building's operating schedule during the school year, which was similar, but with a reduced load during the summer. The application hours of 2,000 were determined to be low for some areas, with the value of 2,500 assigned to the higher usage areas.



AMI kWh Billing Data by Day and Hour

The tables below present ex ante and ex post energy savings verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project.

The existing lighting and installed lighting were extracted from the lighting survey that the site included with the application. It was observed that the prescriptive measures and custom measures on the application were sourced from the same data that was intended to be assigned to the custom program. The measures were not a complete duplicate of each other as the data was extracted from a spreadsheet pivot table that addressed different fields:

- Ex ante Custom quantity sourced from Custom light survey measures by the existing fixture.
- Ex ante Prescriptive quantity sourced from Custom light survey measures by the efficient fixture.

The following tables aggregate the measures by the implementer's original notation and program identification.

|                                      | Quantity (Fixtures) |           | Wattage  |           |       | Heating<br>Cooling    | Ex Ante               | Ex Post Gross | Gross               |
|--------------------------------------|---------------------|-----------|----------|-----------|-------|-----------------------|-----------------------|---------------|---------------------|
| Measure                              | Baseline            | Efficient | Baseline | Efficient | Hours | Interaction<br>Factor | Annual kWh<br>Savings | kWh Savings   | Realization<br>Rate |
| No controls to Occupancy<br>Controls | -                   | 7         | -        | 506       | 2379  | 1.096                 | 2,439                 | 2,769         | 113%                |
| No controls to Occupancy<br>Controls | -                   | 133       | -        | 161       | 2379  | 1.096                 | 46,653                | 16,731        | 36%                 |
| Inc Exit Sign to LED Exit Sign       | 31                  | 31        | 0        | 0         | 2379  | 1.096                 | 2,573                 | 2,573         | 100%                |
| 1L T8 32W to LED Panel               | 7                   | 7         | 29       | 29        | 2379  | 1.096                 |                       | -             |                     |
| 1L T8 32W to LED Recessed            | 1                   | 1         | 29       | 23        | 2379  | 1.096                 |                       | 16            | 17,283              |
| 2L T8 32W to LED Panel               | 2                   | 2         | 59       | 33        | 2379  | 1.096                 |                       | 136           |                     |
| 2L T8 32W to LED Panel               | 4                   | 4         | 59       | 49        | 2379  | 1.096                 |                       | 104           |                     |
| 2L T8 32W to LED Panel               | 12                  | 12        | 59       | 29        | 2379  | 1.096                 |                       | 939           |                     |
| 4L T8 32W to LED Panel               | 7                   | 7         | 118      | 33        | 2379  | 1.096                 | 252,871               | 1,551         |                     |
| 4L T8 32W to LED Panel               | 11                  | 11        | 118      | 49        | 2379  | 1.096                 |                       | 1,979         |                     |
| 4L T8 32W to LED Panel               | 7                   | 7         | 118      | 29        | 2379  | 1.096                 |                       | 1,624         |                     |
| 6L T8 32W to LED Recessed            | 4                   | 4         | 177      | 51.5      | 2379  | 1.096                 |                       | 1,309         |                     |
| 6L T8 32W to LED Panel               | 25                  | 25        | 177      | 49        | 2379  | 1.096                 |                       | 8,344         |                     |
| MH 250W to LED Fixture               | 2                   | 2         | 295      | 49.5      | 2379  | 1.096                 |                       | 1,280         |                     |
| Total                                |                     |           |          |           |       |                       | 304,536               | 39,355        | 13%                 |

## Prescriptive Lighting Energy Savings Calculations

|                                      | Measure Quantity (Fixtures) Wattage Coolin<br>Interact |     | Wat                   | tage                  |                              | Heating<br>Cooling  | Ex Ante |         | Gross |
|--------------------------------------|--------------------------------------------------------|-----|-----------------------|-----------------------|------------------------------|---------------------|---------|---------|-------|
| Measure                              |                                                        |     | Interaction<br>Factor | Annual kWh<br>Savings | Ex Post Gross<br>kWh Savings | Realization<br>Rate |         |         |       |
| 2L T8 32W to LED Panel               | 8                                                      | 7   | 59                    | 45                    | 2379                         | 1.096               |         | 409     |       |
| 2L T8 32W to LED Panel               | 24                                                     | 40  | 59                    | 25                    | 2379                         | 1.096               |         | 1,085   |       |
| 4L T8 32W to LED Panel               | 84                                                     | 64  | 118                   | 30                    | 2379                         | 1.096               |         | 20,838  |       |
| 4L T8 32W to LED Panel               | 125                                                    | 60  | 118                   | 60                    | 2379                         | 1.096               |         | 29,072  |       |
| 4L T8 32W to LED Panel               | 4                                                      | 4   | 118                   | 25                    | 2379                         | 1.096               |         | 970     |       |
| 4L T8 32W to LED Panel               | 777                                                    | 388 | 118                   | 40                    | 2379                         | 1.096               |         | 198,594 |       |
| 4L T8 32W to LED<br>Recessed         | 6                                                      | 4   | 118                   | 42                    | 2379                         | 1.096               |         | 1,408   |       |
| 6L T8 32W to LED Panel               | 69                                                     | 64  | 177                   | 40                    | 2379                         | 1.096               |         | 25,169  |       |
| 6L T8 32W to LED Panel               | 36                                                     | 36  | 177                   | 60                    | 2379                         | 1.096               |         | 10,982  |       |
| MH 250W to LED Linear<br>Fixture     | 4                                                      | 9   | 295                   | 45                    | 2379                         | 1.096               | 283,108 | 2,021   | 121%  |
| MH 250W to LED<br>Walpack            | 12                                                     | 27  | 295                   | 50                    | 4380                         | 1.096               | 285,108 | 10,513  | 12170 |
| MH 400W to LED High<br>Bay           | 32                                                     | 15  | 455                   | 106                   | 2379                         | 1.096               |         | 33,818  |       |
| MH 400W to LED Linear<br>Fixture     | 3                                                      | 4   | 455                   | 45                    | 2379                         | 1.096               |         | 3,090   |       |
| Halogen 50W to LED<br>Recessed       | 10                                                     | 11  | 50                    | 42                    | 4380                         | 1.096               |         | 182     |       |
| Halogen 75W to LED<br>Linear Fixture | 23                                                     | 19  | 75                    | 45                    | 2379                         | 1.096               |         | 2,268   |       |
| Halogen 75W to LED<br>Recessed       | 4                                                      | 4   | 75                    | 40                    | 2379                         | 1.096               |         | 365     |       |
| Halogen 75W to LED<br>Recessed       | 2                                                      | 3   | 75                    | 30                    | 2379                         | 1                   |         | 143     |       |
| Halogen 75W to LED<br>Recessed       | 14                                                     | 7   | 75                    | 25                    | 2379                         | 1                   |         | 2,082   |       |
| Total                                |                                                        |     |                       |                       |                              |                     | 283,108 | 343,009 | 121%  |

Custom Lighting Energy Savings Calculations

#### Results

Gross Energy Impacts Summary

|                       |         | Ex Post |                     |                     |
|-----------------------|---------|---------|---------------------|---------------------|
| Measure Category      | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |
| Prescriptive Lighting | 304,536 | 39,355  | 13%                 | 14.53               |
| Custom Lighting       | 283,108 | 343,009 | 121%                | 77.30               |
| Total                 | 587,644 | 382,365 | 65%                 | 91.83               |

The ex post annual energy savings are 382,365 kWh and the ex post peak demand reduction is 91.83 kW. The energy gross realization rate is 65%. The following items impacted the ex post savings:

- The ex ante prescriptive measures duplicated many of the custom measures by an incorrect reference to the as built lighting survey from the site. The ex post savings maintained the original program assignment and determined the savings for the applicable measures.
- The ex post custom savings were higher than expected, as the operating hours were initially indicated by the AMI billing data to be larger than the applicant interior hours of 2,000. The school building has similar operating hours year-round, with a slightly lower load during the summer. The site contact verified the extended usage along with weekend usage of the gym areas.

## Project Number 115 and 214

#### **Executive Summary**

Under projects 115 and 214, a program participant received prescriptive and custom incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 615,275kWh with ex post peak demand reduction of 46.58 kW. The combined project energy savings gross realization rate is 99%.

### **Project Description**

The customer received prescriptive incentives replacing T5HO linear fluorescent fixtures, T8 linear fixtures, CFL pin base lamps, metal halide fixtures, and halogen lamp exit signs with (174) LED high bay, (9) LED linear fixtures, (46) LED recessed fixtures, (14) LED wall packs, (156) LED troffers, (6) LED pin based, and (9) LED exit signs.

Also, (326) fixture-mounted occupancy sensors were installed with the new fixtures to control interior lighting.

### **Measurement and Verification Effort**

Through email exchanges with the site, ADM staff verified the original lighting survey, determined hours for the plant area and office area, and verified the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| $HCIF_{e}$             | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The tables below present ex ante and ex post energy savings verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project. The new occupancy sensors mounted to the high bays controlled a larger load than the other controls dedicated to a T8 tube light fixture.

|                                            | Quantity (Fixtures) |           | Wat      | Wattage   |       | Heating<br>Cooling    | Ex Ante               | Ex Post Gross | Gross               |
|--------------------------------------------|---------------------|-----------|----------|-----------|-------|-----------------------|-----------------------|---------------|---------------------|
| Measure                                    | Baseline            | Efficient | Baseline | Efficient | Hours | Interaction<br>Factor | Annual kWh<br>Savings | kWh Savings   | Realization<br>Rate |
| No Controls to Fixture<br>Occupancy sensor | -                   | 152       | 14       | 14        | 87,60 | 1.00                  | 46,348                | 5,423         | 12%                 |
| No Controls to Fixture<br>Occupancy sensor | -                   | 174       | 200      | 200       | 8,760 | 1.00                  | 53,056                | 91,454        | 172%                |
| Inc Exit Sign to LED Exit Sign             | 4                   | 4         | 20       | 4         | 8,760 | 1.00                  | 332                   | 561           | 169%                |
| Inc Exit Sign to LED Exit Sign             | 5                   | 5         | 30       | 4         | 8,760 | 1.00                  | 415                   | 1,139         | 274%                |
| 1L T8 32W to 1L LED linear tube            | 10                  | 10        | 28       | 9         | 2,346 | 1.12                  | 1,512                 | 500           | 33%                 |
| 3L T8 32W to LED 2x4 Panel                 | 8                   | 8         | 112      | 44        | 8,760 | 1.00                  | 2,419                 | 4,765         | 197%                |
| MH 70W to LED Recessed                     | 36                  | 36        | 95       | 18        | 4,380 | 1.00                  | 20,684                | 12,141        | 59%                 |
| 2L T8 32W to LED linear fixture            | 8                   | 8         | 56       | 23        | 8,760 | 1.00                  | 4,596                 | 2,313         | 50%                 |
| 4L T8 32W to LED linear fixture            | 1                   | 1         | 112      | 65        | 8,760 | 1.00                  | 575                   | 412           | 72%                 |
| 2L T8 32W to LED Recessed                  | 10                  | 10        | 60       | 18        | 2,346 | 1.12                  | 5,746                 | 1,106         | 19%                 |
| MH 250W to LED Wallpack                    | 1                   | 1         | 295      | 50        | 4,380 | 1.00                  | 626                   | 1,073         | 171%                |
| MH 400W to LED Wallpack                    | 13                  | 13        | 458      | 80        | 4,380 | 1.00                  | 14,040                | 21,523        | 153%                |
| Total                                      |                     |           |          |           |       |                       | 150,349               | 142,410       | 95%                 |

Prescriptive Lighting Energy Savings Calculations

The site contact referenced the original light surveys as applicable to the lighting replacement types. The original lighting and updated lighting survey listed high all high bays replaced one to one, plus the addition of new fixtures. A comparison of the lumens between the 10-lamp T5HO producing 50,000 lumens compared to the new LED high bay at 33,000 lumens supported the inclusion of the 44 new fixtures in the savings analysis.

|                                    | Quantity (Fixtures) |           | Wattage  |           |                             | Heating<br>Cooling | Ex Ante               |                              | Gross               |
|------------------------------------|---------------------|-----------|----------|-----------|-----------------------------|--------------------|-----------------------|------------------------------|---------------------|
| Measure                            | Baseline            | Efficient | Baseline | Efficient | Hours Interaction<br>Factor |                    | Annual kWh<br>Savings | Ex Post Gross<br>kWh Savings | Realization<br>Rate |
| 10L T5 HO 54W to LED<br>Highbay    | 128                 | 174       | 596      | 200       | 8,760                       | 1.00               | 170.070               | 363,435                      | 101%                |
| 4L T8 32W to LED 2x4<br>Troffer    | 148                 | 148       | 112      | 28        | 8,760                       | 1.00               |                       | 108,904                      |                     |
| 2L 2' T8 17W to LED 2x2<br>Troffer | 4                   | 4         | 32       | 20        | 8,760                       | 1.00               | 470,079               | 420                          |                     |
| CFL Pinbase 18W to LED pin         | 3                   | 6         | 20       | 8         | 8,760                       | 1.00               |                       | 105                          |                     |
| Total                              |                     |           |          |           |                             | 470,079            | 472,865               | 101%                         |                     |

Custom Lighting Energy Savings Calculations

#### Results

|                       |         | Ex Post |                     |                     |
|-----------------------|---------|---------|---------------------|---------------------|
| Measure Category      | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |
| Prescriptive Lighting | 150,349 | 142,410 | 95%                 | 5.56                |
| Custom Lighting       | 470,079 | 472,865 | 101%                | 41.02               |
| Total                 | 620,428 | 615,275 | 99%                 | 46.58               |

Gross Energy Impacts Summary

The ex post annual energy savings are 615,275 kWh and the ex post peak demand reduction is 46.58 kW. The energy gross realization rate is 99%.

The fixture occupancy sensors installed on the higher load (200W) high bays fixtures had higher realized energy savings, whereas the occupancy sensors dedicated to each of the ceiling fixtures (14W) realized less energy savings.

#### Project Number 116 and 215

#### **Executive Summary**

Under projects 116 and 215, a program participant received prescriptive and custom incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 441,718 kWh with ex post peak demand reduction of 35.54 kW. The combined project energy savings gross realization rate is 104%.

#### **Project Description**

The customer received prescriptive incentives replacing T5HO linear fluorescent fixtures, T8 linear fixtures, T12 fluorescent fixtures, metal halide lamp fixtures, and exit signs with (178) LED high bay fixtures, (10) LED linear strip fixtures, (126) LED 2x4 troffer and (13) LED exit signs.

Also, (178) fixture mounted occupancy sensors were installed to control high bay lighting and another (121) for individual fixtures.

#### **Measurement and Verification Effort**

Through email exchanges with the site, ADM staff verified the original lighting survey, determined hours for the plant area and office area, and verified the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_{e})$$
$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_{d})$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| Ν                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| $HCIF_{e}$             | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The tables below present ex ante and ex post energy savings verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project.

| Measure                                    | Quantity (Fixtures) |           | Wattage  |           | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|--------------------------------------------|---------------------|-----------|----------|-----------|--------|-----------------------|-----------------------|---------------|----------------------|
| measure                                    | Baseline            | Efficient | Baseline | Efficient | 110015 | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| MH 1000W to LED Flood<br>Fixture           | 11                  | 11        | 1080     | 310       | 4,380  | 1.00                  | 33,264                | 37,099        | 112%                 |
| MH 400W Wallpack to<br>LED Wallpack        | 7                   | 7         | 460      | 80        | 4,380  | 1.00                  | 7,560                 | 11,651        | 154%                 |
| Inc Exit Sign to LED Exit<br>Sign          | 11                  | 11        | 50       | 2         | 8,760  | 1.00                  | 1,079                 | 4,625         | 429%                 |
| Halogen Exit Sign to LED<br>Exit Sign      | 2                   | 2         | 70       | 0         | 8,760  | 1.00                  | 1,075                 | 1,226         |                      |
| No Controls to Occupancy controls          | 0                   | 121       | 0        | 15        | 3,129  | 1.00                  | 36,895                | 1,656         | 4%                   |
| No Controls to Fixture<br>Occupancy Sensor | 0                   | 178       | 0        | 200       | 8,760  | 1.00                  | 54,276                | 93,557        | 172%                 |
| Total                                      |                     |           |          |           |        |                       |                       |               | 113%                 |

Prescriptive Lighting Energy Savings Calculations

The site contact referenced the original light surveys as applicable to the lighting replacement types. The final lighting survey provided the quantity of the additional LED high bays to supplement the other 1:1 figure replacement. These were included in the efficient case to determine the total installed wattage for the custom measures.

| Measure                                  | Quantity | (Fixtures) | Wat      | tage      | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|------------------------------------------|----------|------------|----------|-----------|--------|-----------------------|-----------------------|---------------|----------------------|
| meusure                                  | Baseline | Efficient  | Baseline | Efficient | 110415 | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| 4L T8 32W Strip to LED<br>Highbay        | 1        | 1          | 113      | 200       | 3,129  | 1.00                  |                       |               |                      |
| 10L T5HO 54W to LED<br>Highbay           | 80       | 80         | 600      | 200       | 8,760  | 1.00                  |                       |               |                      |
| 6L T5HO 54W to LED<br>Highbay            | 17       | 17         | 379      | 200       | 8,760  | 1.00                  |                       | 284,956       |                      |
| 4L T8 32W to LED<br>Highbay              | 1        | 1          | 113      | 200       | 8,760  | 1.00                  |                       |               |                      |
| 6L T8 32W to LED<br>Highbay              | 3        | 3          | 169      | 200       | 3,129  | 1.00                  |                       |               |                      |
| No existing to LED<br>Highbay            | 0        | 76         | 0        | 200       | 8,760  | 1.00                  |                       |               |                      |
| 2L T12 8' 95W Strip to<br>LED 2L Strip   | 1        | 1          | 209      | 50        | 8,760  | 1.00                  | 291,741               | 1,390         | 101%                 |
| 2L T8 59W Strip to LED<br>2L Strip       | 6        | 6          | 104      | 50        | 8,760  | 1.00                  |                       | 2,828         |                      |
| 2L T8 32W Strip to LED<br>Strip          | 3        | 3          | 56       | 25        | 3,129  | 1.00                  |                       | 294           |                      |
| 4L T12 40W Troffer to<br>LED 2x4 Troffer | 5        | 5          | 172      | 28        | 8,760  | 1.00                  |                       | 6,307         |                      |
| 2L T8 32W Troffer to LED<br>2x4 Troffer  | 7        | 7          | 56       | 28        | 3,129  | 1.08                  |                       | 669           |                      |
| 4L T8 32W Troffer to LED<br>2x4 Troffer  | 114      | 114        | 112.6    | 28        | 3,129  | 1.08                  |                       | 32,592        |                      |
| MH 400W Wallpack to<br>LED Wallpack      | 6        | 6          | 460      | 80        | 4,380  | 1                     |                       | 11,651        |                      |
| Total                                    |          |            |          |           |        |                       | 291,741               | 294,904       | 101%                 |

Custom Lighting Energy Savings Calculations

## Results

|                       | 0, 1    |         |                     |                     |  |
|-----------------------|---------|---------|---------------------|---------------------|--|
|                       |         | Ex Post |                     |                     |  |
| Measure Category      | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |  |
| Prescriptive Lighting | 133,074 | 149,814 | 113%                | 4.77                |  |
| Custom Lighting       | 291,741 | 294,904 | 101%                | 30.77               |  |
| Total                 | 424,815 | 444,718 | 104%                | 35.54               |  |

Gross Energy Impacts Summary

The ex post annual energy savings are 444,718 kWh and the ex post peak demand reduction is 35.53 kW. The energy gross realization rate is 104%. The differences in the expected to realized savings are due to:

• There is uncertainty in the installation area of the (74) extra LED high bays that were not a 1:1 replacement. A lighting design drawing was not available. As the lumen output of the new LED is less than the lumen output of the T5 HO ten lamp fixtures, the evaluation team included 37 of the new fixtures in the post installation installed watts for the savings algorithm. The site could verify installation, but uncertain of the evaluation boundary.

## Project Number 120 and 209

#### **Executive Summary**

Under projects 120 and 209, a program participant received prescriptive and custom incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 862,376 kWh with ex post peak demand reduction of 81.08 kW. The project energy savings gross realization rate is 202%.

#### **Project Description**

The customer received prescriptive incentives for replacing T8 and T12 linear fluorescent with LED lamps and new fixtures, replacing metal halide fixtures with LED fixtures.

#### **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| $HCIF_{e}$             | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The table below presents ex ante and ex post energy savings, verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project.

Prescriptive Lighting Energy Savings Calculations

## Indiana C&I Portfolio

## Exhibit B: 2022 I&M Indiana C&I Portfolio EM&V Report 2022 EM&V Report

| Measure                    | Quantity | (Fixtures) | Wat      | tage      | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|----------------------------|----------|------------|----------|-----------|--------|-----------------------|-----------------------|---------------|----------------------|
| meusure                    | Baseline | Efficient  | Baseline | Efficient | 110015 | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| 2L T8 to LED Troffer       | 25       | 25         | 59       | 30        | 8,760  | 1.074                 | 11,016                | 6,821         | 62%                  |
| MH 250W to LED shoebox     | 14       | 14         | 295      | 50        | 4,380  | 1.00                  | 8,770                 | 15,023        | 171%                 |
| 4L T8 HB relamp to LED T8  | 2        | 8          | 149.8    | 15        | 8,760  | 1.074                 | 657                   | 1,690         | 257%                 |
| 4L T8 relamp to LED T8     | 4        | 16         | 112      | 15        | 8,760  | 1.074                 | 1,313                 | 1,957         | 149%                 |
| 4L T8 HB relamp to T8      | 305      | 1220       | 149.8    | 15        | 8,760  | 1.074                 |                       | 257,682       |                      |
| 4L T8 HB relamp to T8      | 72       | 288        | 149.8    | 15        | 8,760  | 1.074                 | 177,621               | 60,830        | 233%                 |
| 4L T8 HB relamp to T8      | 157      | 628        | 149.8    | 15        | 6,307  | 1.074                 |                       | 95,503        |                      |
| 6L T8 HB to LED HB         | 129      | 129        | 226      | 110       | 8,447  | 1.074                 | 46,812                | 135,757       | 290%                 |
| 2L T8 to LED Troffer       | 102      | 102        | 56       | 36        | 8,760  | 1.074                 | 12,338                | 19,193        | 156%                 |
| 2L T8 to LED Troffer       | 37       | 37         | 56       | 45        | 8,760  | 1.074                 | 4,476                 | 3,829         | 86%                  |
| 2L T8 to LED Strip         | 48       | 48         | 59       | 34        | 6,570  | 1.074                 |                       | 8,467         |                      |
| 2L T8 to LED Strip         | 74       | 74         | 59       | 34        | 8,760  | 1.074                 |                       | 17,405        |                      |
| 2L T8 to LED Strip         | 8        | 8          | 59       | 34        | 8,760  | 1.074                 | 16,330                | 1,882         | 184%                 |
| 2L T12 to LED Strip        | 1        | 1          | 59       | 34        | 8,760  | 1.074                 |                       | 235           |                      |
| 3L T8 to LED Strip         | 4        | 4          | 89       | 34        | 8,760  | 1.074                 |                       | 2,070         |                      |
| 4L T8 to LED Strip         | 31       | 31         | 112      | 65        | 8,760  | 1.074                 | 13,660                | 13,708        | 100%                 |
| 2L T8 to LED Strip         | 5        | 5          | 59       | 90        | 8,760  | 1.074                 |                       | (1,458)       | <b>2 2 3</b> (       |
| 4L T8 to LED Strip         | 19       | 19         | 112      | 90        | 8,760  | 1.074                 | 10,575                | 3,933         | 23%                  |
| 2L T8 to LED Troffer       | 20       | 20         | 56       | 32        | 8,760  | 1.074                 | 2,419                 | 4,516         | 191%                 |
| 2LT12Ubend toLED Troffer   | 2        | 2          | 32       | 26        | 8,760  | 1.074                 |                       | 113           | 4=07                 |
| 2L T8 Ubend to LED troffer | 6        | 6          | 32       | 26        | 8,760  | 1.074                 | 968                   | 339           | 47%                  |
| 2L T8 to LED Troffer       | 101      | 101        | 56       | 32        | 8,760  | 1.074                 | 12,217                | 22,806        | 187%                 |
| 4L T8 to LED Troffer       | 37       | 37         | 112      | 32        | 8,760  | 1.074                 |                       | 27,848        |                      |
| 4L T8 to LED Troffer       | 10       | 10         | 112      | 32        | 8,760  | 1.074                 | 22,473                | 7,527         | 171%                 |
| 4L T8 to LED Troffer       | 4        | 4          | 112      | 32        | 8,760  | 1.074                 |                       | 3,011         |                      |
| MH 250W to LED fixture     | 3        | 3          | 295      | 150       | 4,380  | 1                     |                       | 1,905         |                      |
| 2L MH250W to LED pole      | 4        | 4          | 590      | 150       | 4,380  | 1                     | 9,396                 | 7,709         | 486%                 |
| 4L MH250W to LED pole      | 8        | 8          | 1180     | 150       | 4,380  | 1                     |                       | 36,091        |                      |
| 2L T8 to LED Troffer       | 88       | 88         | 59       | 30        | 8,760  | 1.074                 |                       | 24,010        |                      |
| 2L T8 to LED Troffer       | 9        | 9          | 59       | 30        | 8,760  | 1.074                 | 20 221                | 2,456         | 218%                 |
| 2L T8 to LED Troffer       | 31       | 31         | 56       | 30        | 8,760  | 1.074                 | 20,321                | 7,583         | 210/0                |
| 2L T8 to LED Troffer       | 42       | 42         | 56       | 30        | 8,760  | 1.074                 |                       | 10,274        |                      |
| 4L T8 to LED Troffer       | 3        | 3          | 59       | 60        | 7,300  | 1.074                 | 363                   | (24)          | -                    |
| 4L T8 to LED Troffer       | 8        | 8          | 112      | 60        | 7,300  | 1.074                 | 3,525                 | 3,262         | 90%                  |
| MH100W to LED fixture      | 1        | 1          | 128      | 40        | 4,380  | 1                     |                       | 385           | 16%                  |
| MH100W to LED wallpack     | 2        | 2          | 128      | 40        | 4,380  | 1                     | 2,419                 | 771           | 32%                  |
| MH175W to LED wallpack     | 4        | 4          | 208      | 40        | 4,380  | 1                     |                       | 2,943         | 122%                 |
| Total                      |          |            |          |           |        |                       | 377,667               | 808,050       | 214%                 |

| Measure                             | Quantity (Fixtures) |           | Wattage  |           | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|-------------------------------------|---------------------|-----------|----------|-----------|--------|-----------------------|-----------------------|---------------|----------------------|
| <i>Meusure</i>                      | Baseline            | Efficient | Baseline | Efficient | 110415 | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| Inc 60W A-Lamp to LED A-19          | 1                   | 1         | 43       | 13        | 8,760  | 1.074                 |                       | 282           |                      |
| Inc 100W PAR to LED PAR             | 12                  | 12        | 73       | 13        | 4,380  | 1.00                  |                       | 3,154         | 111%                 |
| 3L 2x2 T8 17W to LED 2x2<br>Troffer | 30                  | 30        | 44.9     | 26        | 8,760  | 1.074                 |                       | 5,334         |                      |
| 4L T8 32W to LED Troffer            | 45                  | 45        | 112      | 30        | 8,760  | 1.074                 |                       | 34,716        |                      |
| 1L T8 32W to LED Strip              | 46                  | 46        | 41       | 34        | 8,760  | 1.074                 | 49,087                | 3,029         |                      |
| MH 70W to LED Corncob               | 12                  | 12        | 95       | 35        | 4,380  | 1.00                  |                       | 3,154         |                      |
| MH 100W to LED Corncob              | 1                   | 1         | 128      | 36        | 4,380  | 1.00                  |                       | 403           |                      |
| Halogen 50W to LED<br>Recessed      | 8                   | 8         | 45       | 8         | 8,760  | 1.074                 | _                     | 2,785         | -                    |
| 2L 8' T12 to LED Strip              | 3                   | 3         | 112      | 60        | 8,760  | 1.074                 |                       | 1,468         |                      |
| Total                               |                     |           |          |           |        |                       | 49,087                | 54,325        | 111%                 |

## Custom Lighting Energy Savings Calculations

## Results

Gross Energy Impacts Summary

|                       |         | kWh Savings |                     | Ex Post             |  |
|-----------------------|---------|-------------|---------------------|---------------------|--|
| Measure Category      | Ex Ante | Ex Post     | Realization<br>Rate | Gross kW<br>Savings |  |
| Prescriptive Lighting | 377,667 | 808,050     | 214%                | 76.47               |  |
| Custom Lighting       | 49,087  | 54,325      | 111%                | 4.62                |  |
| Total                 | 426,754 | 862,376     | 202%                | 81.08               |  |

The ex post annual energy savings are 862,376 kWh and the ex post peak demand reduction is 81.08 kW. The energy gross realization rate is 202%. The following items impacted the ex post savings:

- The ex post prescriptive savings considered the existing fixtures, lamps, quantities from the as-built lighting survey. EISA based wattages were referenced from T12 linear fluorescent lamps and incandescent lamps for their lumen equivalent baseline. The ex ante savings were determined from deemed per unit savings values for typical replacements. The hours of use were verified as running continuously for the interior fixtures.
- The ex post custom savings included the heating cooling interactive effects for the lighting load reduction in the air conditioned, gas heated manufacturing facility.
- Data was collected for ancillary econometric IPMVP Option C Whole Building Facility analysis to accompany the Option A analysis, but the project duration was from March to November 2022. Without enough post period data for a billing data to degree day regression, a comparison of 2022 billing data to 2021 billing data was made, indicating the in-progress savings had exceeded the expected savings.

## Project Number 111,112 and 113

## **Executive Summary**

Under projects 111,112 and 113, a program participant received prescriptive incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 6,219 kWh with ex post peak demand reduction of 2.28 kW. The site energy savings gross realization rate is 49%.

## **Project Description**

The customer received prescriptive incentives for replacing T5HO linear fluorescent lamps with LED linear lamps and 2x2 LED panels. Also, the participant installed occupancy controls for the new lighting.

## **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| HCIF <sub>e</sub>      | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The table below presents ex ante and ex post energy savings, verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project.

| Measure              | Quantity (Fixtures) |           | Wattage  |           | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|----------------------|---------------------|-----------|----------|-----------|--------|-----------------------|-----------------------|---------------|----------------------|
| measure              | Baseline            | Efficient | Baseline | Efficient | 110015 | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| 1L T5HO to LED panel | 13                  | 13        | 55       | 36.3      | 2,500  | 1.101                 | 1,572                 | 669           | 43%                  |
| 1L T5HO relamp LED   | 24                  | 24        | 59       | 25.5      | 2,500  | 1.101                 | 3,624                 | 2,213         | 61%                  |
| Occupancy Controls   | 6                   | 6         | -        | 102.0     | 2,500  | 1.101                 | 1,830                 | 505           | 28%                  |
| 1L T5HO relamp LED   | 25                  | 25        | 59       | 25.5      | 2,500  | 1.101                 | 3,780                 | 2,305         | 61%                  |
| Occupancy Controls   | 6                   | 6         | -        | 106.25    | 2,500  | 1.101                 | 1,830                 | 526           | 29%                  |
| Total                | Total               |           |          |           |        |                       |                       | 6,219         | 49%                  |

# Prescriptive Lighting Energy Savings Calculations

## Results

Gross Energy Impacts Summary

|                       |         | Ex Post |                     |                     |
|-----------------------|---------|---------|---------------------|---------------------|
| Measure Category      | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |
| Prescriptive Lighting | 12,636  | 6,219   | 49%                 | 2.28                |
| Total                 | 12,636  | 6,219   | 49%                 | 2.28                |

The ex post annual energy savings are 6,129 kWh and the ex post peak demand reduction is 2.28 kW. The energy gross realization rate is 49%. The following items impacted the ex post savings:

• The ex post prescriptive energy listed the existing lamp, new lamp wattage along with the hours of use provided by the site contact providing the best estimate of energy savings. The ex ante deemed savings were predetermined by other conditions.

## Project Number 118 and 219

#### **Executive Summary**

Under projects 122 and 219, a program participant received prescriptive and custom incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 98,383 kWh with ex post peak demand reduction of 37.80 kW. The site energy savings gross realization rate is 77%.

#### **Project Description**

The customer received prescriptive incentives for replacing T8 and T12 high bay fixtures with (266) LED high bay fixtures.

#### **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| HCIFe                  | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The tables below present ex ante and ex post energy savings verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project.

| Measure                      | Quantity (Fixtures) |           | Wattage  |           | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross              | Gross<br>Realization |
|------------------------------|---------------------|-----------|----------|-----------|--------|-----------------------|-----------------------|----------------------------|----------------------|
| meusure                      | Baseline            | Efficient | Baseline | Efficient | 110015 | Interaction<br>Factor | Savings               | Savings <i>kWh Savings</i> | Rate                 |
| 6L T8 32W to LED High<br>bay | 10                  | 10        | 226      | 105       | 2,340  | 1.121                 | 3,629                 | 3,174                      | 87%                  |
| 6L T8 32W to LED High<br>bay | 118                 | 118       | 226      | 155       | 2,340  | 1.121                 | 42,820                | 21,977                     | 51%                  |
| 6L T8 32W to LED High<br>bay | 43                  | 43        | 226      | 155       | 2,340  | 1.121                 | 15,604                | 8,008                      | 51%                  |
| Total                        |                     |           |          |           |        |                       | 62,052                | 33,159                     | 53%                  |

# Prescriptive Lighting Energy Savings Calculations

Custom Lighting Energy Savings Calculations

| Measure                     | Quantity (Fixtures) |           | Wattage  |           | Hours | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|-----------------------------|---------------------|-----------|----------|-----------|-------|-----------------------|-----------------------|---------------|----------------------|
|                             | Baseline            | Efficient | Baseline | Efficient | nours | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| 2L T8 HO to LED High<br>bay | 435                 | 95        | 79       | 100       | 2,340 | 1.121                 | 65,654                | 65,224        | 99%                  |
| Total                       |                     |           |          |           |       |                       | 65,654                | 65,224        | 99%                  |

## Results

Gross Energy Impacts Summary

|                       |         | kWh Savings |                     | Ex Post             |  |
|-----------------------|---------|-------------|---------------------|---------------------|--|
| Measure Category      | Ex Ante | Ex Post     | Realization<br>Rate | Gross kW<br>Savings |  |
| Prescriptive Lighting | 62,052  | 33,159      | 53%                 | 12.74               |  |
| Custom Lighting       | 65,654  | 65,224      | 99%                 | 25.06               |  |
| Total                 | 127,706 | 98,383      | 77%                 | 37.80               |  |

The ex post annual energy savings are 98,383 kWh and the ex post peak demand reduction is 37.80 kW. The energy gross realization rate is 77%. The following items impacted the ex post savings:

• The ex post prescriptive energy savings method listed the existing lamp, new lamp wattage along with the hours of use provided by the site contact providing the best estimate of energy savings. The ex ante deemed savings were predetermined by other conditions.

## Project Number 100 and 200

#### **Executive Summary**

Under projects 100 and 200, a program participant received prescriptive and custom incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 87,655 kWh with ex post peak demand reduction of 15.69 kW. The project energy savings gross realization rate is 121%.

#### **Project Description**

The customer received prescriptive incentives for relamping and also replacing T8 linear fluorescent lamp/fixtures with (222) LED 4' lamps, (8) LED retrofit kits, (125) LED high bay and (14) LED panel fixtures.

## **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_{e})$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| HCIF <sub>e</sub>      | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The tables below present ex ante and ex post energy savings verified lighting hours of operation, and the heating and cooling interactive factors associated with the lighting equipment installed under the project.

| Measure                                    | Quantity | (Fixtures) | Wat      | Wattage   |       | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|--------------------------------------------|----------|------------|----------|-----------|-------|-----------------------|-----------------------|---------------|----------------------|
| meusure                                    | Baseline | Efficient  | Baseline | Efficient | Hours | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| 4' T8 Lamp to LED Lamp                     | 16       | 16         | 24.5     | 9         | 5,000 | 1.126                 | 1,312                 | 1,396         | 106%                 |
| 4' T8 Lamp to LED Lamp                     | 160      | 160        | 24.5     | 9         | 5,000 | 1.126                 | 13,120                | 13,962        | 106%                 |
| 4' T8 Lamp to LED Lamp                     | 18       | 18         | 24.5     | 9         | 5,000 | 1.126                 | 1,476                 | 1,571         | 106%                 |
| 4' T8 Lamp to LED Lamp                     | 28       | 28         | 24.5     | 9         | 5,000 | 1.126                 | 2,296                 | 2,443         | 106%                 |
| 4' 4L T8 fixture to LED retrofit kit       | 8        | 8          | 112      | 34        | 5,000 | 1.126                 | 3,528                 | 3,513         | 100%                 |
| 4' 6L T8 fixture to LED<br>highbay fixture | 19       | 19         | 186      | 107       | 5,000 | 1.126                 | 6,895                 | 8,451         | 123%                 |
| 4' 6L T8 fixture to LED<br>highbay fixture | 106      | 106        | 186      | 100       | 5,000 | 1.126                 | 38,465                | 51,323        | 133%                 |
| Total                                      |          |            |          |           |       |                       |                       |               | 123%                 |

# Prescriptive Lighting Energy Savings Calculations

## Custom Lighting Energy Savings Calculations

| Measure                       | Quantity | Quantity (Fixtures) |          | Wattage   |       | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|-------------------------------|----------|---------------------|----------|-----------|-------|-----------------------|-----------------------|---------------|----------------------|
|                               | Baseline | Efficient           | Baseline | Efficient | Hours | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| 4' 4L T8 fixture to LED panel | 1        | 1                   | 112      | 32        | 5,000 | 1.126                 | 464                   | 450           | 97%                  |
| 4' 4L T8 fixture to LED panel | 1        | 1                   | 112      | 32        | 5,000 | 1.126                 | 464                   | 450           | 97%                  |
| 4' 4L T8 fixture to LED panel | 9        | 9                   | 92.6     | 32        | 5,000 | 1.126                 | 3,177                 | 3,071         | 97%                  |
| 4' 4L T8 fixture to LED panel | 1        | 1                   | 92.6     | 32        | 5,000 | 1.126                 | 353                   | 341           | 97%                  |
| 4' 4L T8 fixture to LED panel | 2        | 2                   | 92.6     | 32        | 5,000 | 1.126                 | 706                   | 682           | 97%                  |
| Total                         |          | 5,164               | 4,995    | 97%       |       |                       |                       |               |                      |

## Results

## Gross Energy Impacts Summary

|                       |         | kWh Savings |                     |                     |  |  |  |
|-----------------------|---------|-------------|---------------------|---------------------|--|--|--|
| Measure Category      | Ex Ante | Ex Post     | Realization<br>Rate | Gross kW<br>Savings |  |  |  |
| Prescriptive Lighting | 67,092  | 82,660      | 123%                | 14.80               |  |  |  |
| Custom Lighting       | 5,164   | 4,995       | 97%                 | 0.89                |  |  |  |
| Total                 | 72,256  | 87,655      | 121%                | 15.69               |  |  |  |

The ex post annual energy savings are 87, 655 kWh and the ex post peak demand reduction is15.69 kW. The energy gross realization rate is 121%. The following items impacted the ex post savings:

• The ex ante custom savings estimate used a waste heat energy factor of 0.146 where the building HVAC is AC with Natural Gas Heat has a *IN TRM* factor of 0.126.

## Project Number 101 and 201

#### **Executive Summary**

Under projects 101 and 201, a program participant received prescriptive and custom incentives from I&M for the buildout of an existing big box retail building. The ex post annual energy savings are 310,012 kWh with ex post peak demand reduction of 47.67 kW. The project energy savings gross realization rate is 78%.

## **Project Description**

The program participant received custom incentives for:

- LED lighting for retail store, (30,000 SF)
- Lighting network controls
- Demand control ventilation implemented with a BMS controller and C0<sub>2</sub> sensing in the packaged rooftop units.
- Scheduling of the rooftop units for unoccupied periods

Also, prescriptive incentives received for:

- VFDs installed on the HVAC rooftop units supply fans, total of 42 HP
- Installation of (4) heat pumps, determined to be HVAC packaged units with gas heat.

## **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

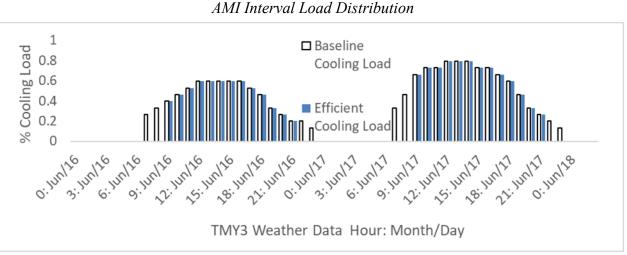
Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| HCIF <sub>e</sub>      | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

As the HVAC units were electric cooling and gas heat, the savings were determined by the following equation:

$$kWh_{Savings} = \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right) \times kBtuh \times EFLH_{cooling}$$

$$kW_{Peak} = \left(\frac{1}{EER_{Base}} - \frac{1}{EER_{EE}}\right) \times kBtuh \times CF$$


Where:

kWhsavings= Annual energy savingskBtuh= Net cooling capacity of the air conditionerSEERBase= Seasonal Energy Efficiency Ratio of baseline unitEERBase= Energy Efficiency Ratio of baseline unitEEREE= Energy Efficiency Ratio of as-built unitEFLH= Equivalent Full Load Hours of air conditioner operation, big box retailCF= Coincidence Factor for Peak Demand hours

| Measure                   | Building Type  | Baseline<br>IEER<br>/SEER | Total<br>Tons | Installed<br>IEER /<br>SEER | EFLH  | CF   | Ex Ante<br>Annual<br>kWh<br>Savings | Ex Post<br>Gross kWh<br>Savings | Gross<br>Realization<br>Rate |
|---------------------------|----------------|---------------------------|---------------|-----------------------------|-------|------|-------------------------------------|---------------------------------|------------------------------|
| HVAC - Air<br>Conditioner | Big Box Retail | 14.0                      | 3             | 17.0                        | 1,056 | 0.74 | 2,811                               | 479                             | 17%                          |
| HVAC - Air<br>Conditioner | Big Box Retail | 14.0                      | 4             | 17.0                        | 1,056 | 0.74 | 2,811                               | 639                             | 23%                          |
| HVAC - Air<br>Conditioner | Big Box Retail | 14.0                      | 8             | 17.0                        | 1,056 | 0.74 | 5,622                               | 1,278                           | 23%                          |
| Total                     |                |                           |               |                             |       |      | 11,245                              | 2,396                           | 21%                          |

HVAC Energy Savings Calculations

Savings from the scheduling of the units were determined by a weather load bin analysis based on TMY3 local weather data. The data provided for the new scheduled hours compared to the existing hours were utilized with the cooling load for each hour in the 8,760-hour profile. Two days of the analysis are presented in the following figure.



The inputs used in the weather bin analysis are summarized in the following table. Although the ex ante and ex post analysis based the savings on the same reduction in operating hours, the ex post considered the load profile during the new unoccupied period. The reduced hours occurred in the early morning and at night when the cooling load is less than the average cooling load hour.

| Measure    | Total<br>Cooling | IEER /SEER | Total<br>Supply | Reduced Scheduled<br>Hours Per Day |         | Full Load Cooling<br>Hours Reduced |         | Expected<br>kWh | Realized<br>kWh | Realization<br>Rate |
|------------|------------------|------------|-----------------|------------------------------------|---------|------------------------------------|---------|-----------------|-----------------|---------------------|
| Tons       |                  | Fan Hp     | Ex Ante         | Ex Post                            | Ex Ante | Ex Post                            | Savings | Savings         | 1000            |                     |
| Scheduling | 121              | 11.5 to 17 | 38              | 3.5                                | 3.5     | 639                                | 115     | 111,710         | 42,060          | 38%                 |
| Total      | •                | •          |                 | <u>.</u>                           |         |                                    |         | 111,710         | 42,060          | 38%                 |

HVAC Savings Calculations

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and facility's HVAC type.

| Custom Eigning Energy Suvings Culculations |                     |           |          |           |       |                                             |                          |                              |                              |  |
|--------------------------------------------|---------------------|-----------|----------|-----------|-------|---------------------------------------------|--------------------------|------------------------------|------------------------------|--|
| Measure                                    | Quantity (Fixtures) |           | Wattage  |           | Hours | Heating<br>Cooling<br>Interaction<br>Factor | Ex Ante<br>Annual<br>kWh | Ex Post Gross<br>kWh Savings | Gross<br>Realization<br>Rate |  |
|                                            | Baseline            | Efficient | Baseline | Efficient |       |                                             | Savings                  |                              |                              |  |
| LPD to LED High Bay 92W                    | 108                 | 108       | 292      | 87        | 4984  | 1.126                                       |                          | 124,098                      | 98%                          |  |
| LPD to LED Troffer 40W                     | 18                  | 18        | 134      | 40        | 4984  | 1.126                                       |                          | 9,509                        |                              |  |
| LPD to LED Troffer 40W                     | 4                   | 4         | 134      | 40        | 4984  | 1.126                                       |                          | 2,113                        |                              |  |
| LPD to LED Strip 65W                       | 16                  | 16        | 218      | 65        | 4984  | 1.126                                       | 180,940                  | 13,736                       |                              |  |
| LPD to LED Downlight 12W                   | 8                   | 8         | 40       | 12        | 4984  | 1.126                                       |                          | 1,268                        |                              |  |
| LPD to LED MR16 6W                         | 332                 | 332       | 20       | 6         | 4984  | 1.126                                       |                          | 26,309                       |                              |  |
| LPD to LED PAR38 15W                       | 1                   | 1         | 50       | 15        | 4984  | 1.126                                       |                          | 198                          |                              |  |
| Total                                      |                     |           |          |           |       |                                             | 180,940                  | 177,232                      | 98%                          |  |

Custom Lighting Energy Savings Calculations

The energy savings for the network lighting controls were determined by applying the Indiana TRM energy savings factor of 10% to the connected load, summarized in the following table.

| Measure          | Occupancy<br>Sensors | Watts | Hours | Heating<br>Cooling<br>Interaction<br>Factor | Ex Ante<br>Annual kWh<br>Savings | Ex Post Gross<br>kWh Savings | Gross<br>Realization<br>Rate |
|------------------|----------------------|-------|-------|---------------------------------------------|----------------------------------|------------------------------|------------------------------|
| Network Controls | 108                  | 86.9  | 4984  | 1.126                                       | 5,361                            | 5,267                        | 98%                          |
| Network Controls | 18                   | 40    | 4984  | 1.126                                       | 411                              | 404                          | 98%                          |
| Network Controls | 4                    | 40    | 4984  | 1.126                                       | 91                               | 90                           | 98%                          |
| Network Controls | 16                   | 65    | 4984  | 1.126                                       | 594                              | 584                          | 98%                          |
| Network Controls | 8                    | 12    | 4984  | 1.126                                       | 55                               | 54                           | 98%                          |
| Network Controls | 332                  | 6     | 4984  | 1.126                                       | 1,138                            | 1,118                        | 98%                          |
| Network Controls | 1                    | 15    | 4984  | 1.126                                       | 15                               | 8                            | 98%                          |
| Total            |                      |       |       |                                             | 7,665                            | 7,525                        | 98%                          |

Custom Lighting Network Controls Calculations

The demand control ventilation savings for the CO2 control system equipped with the new rooftop packaged HVAC units was determined by applying the *IN TRM* savings factor for the location and building type. The energy savings are the product of 30,005 square feet of building area and the savings factor of 547 kWh/1,000 SF, resulting in 16,412 kWh with 4.7 kW in demand reduction, equal to the ex ante savings estimate.

## Results

Gross Energy Impacts Summary

|                            |         | kWh Savings |                     | Ex Post             |
|----------------------------|---------|-------------|---------------------|---------------------|
| Measure Category           | Ex Ante | Ex Post     | Realization<br>Rate | Gross kW<br>Savings |
| Prescriptive               |         |             |                     |                     |
| VFD on supply fan          | 67,080  | 64,386      | 96%                 | 7.35                |
| Packaged rooftop unit      | 11,245  | 2,396       | 21%                 | 1.68                |
| Custom                     |         |             |                     |                     |
| Lighting                   | 180,940 | 177,232     | 98%                 | 28.04               |
| Lighting Controls          | 7,665   | 7,525       | 98%                 | 1.09                |
| Demand Control Ventilation | 16,413  | 16,413      | 100%                | 4.71                |
| HVAC Scheduling            | 111,710 | 42,060      | 37%                 | 4.80                |
| Total                      | 395,053 | 310,012     | 78%                 | 47.67               |

The ex post annual energy savings are 310,012 kWh and the ex post peak demand reduction is 47.67 kW. The energy gross realization rate is 78%.

The expected scheduling savings of HVAC equipment overestimated the savings as it applied the reduced hours of operation to the effective full load of the units. The ex post savings applied the reduced hours as they occur to an 8760 weather bin load analysis, with the reduced hours occurring early before the store opens and late after closing, when the cooling load is the lowest. The reduced sum of hours were the same for the ex ante and ex post hours; only the time of day of occurrence differed.

## Project Number 202

#### **Executive Summary**

Under project 202, a program participant received custom incentives from I&M for the detection and repair of compressed air leak in their industrial facility. The ex post annual energy savings are 34,001 kWh, with an ex post peak demand reduction of 3.9 kW. The project energy savings gross realization rate is 100%.

#### **Project Description**

The customer utilized a Trade Ally to locate air leaks in their facility using ultrasonic leak detection and repair the source of 38.2 CFM of air leaks.

## **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the completion of the leak repair project, the hours of operation, and the energy profile and operation of the on-site air compressor. ADM then used the *UE Systems Compressed Gas Flow Rate Curves* to calculate the air loss rate at each leak based on the ultrasonic decibel (dB) reading at each leak. To calculate the annual energy consumption reduction, this air loss calculation was used, along with compressor-specific power and annual hours of operation. The following equations were used to calculate the annual energy savings from the leak repairs:

$$SCFM_{repairs} = 0.02 \ x \ db^{1.3399}$$

The Fraction Power (FP) on the air compressor demand curve, where the reduction in load occurs from repairing the air leaks, was determined by the method adapted from *Modeling and Simulation of Air Compressor Use, ACEEE.org.* Applying the FP to the product of the reduced air flow and power is summarized in the following equation:

$$kWh_{savings} = CFM_{repairs} x \frac{1}{\underline{SCFM}} x (FP_o + (1 - FP_o)xFC)$$

The peak demand equation:

$$kW_{Peak} = \frac{kWh_{savings}}{HOU}$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                         |
|------------------------|-----------------------------------------------------------------|
| CFM                    | = Air leaks; CFM                                                |
| db                     | = ultrasonic air leak intensity; decibels                       |
| kW                     | = Full load air compressor power, kw                            |
| SCFM                   | = Full load air compressor flow, cfm                            |
| $FP_o$                 | = No Production factor                                          |
| FC                     | = Fraction of operating range; assume savings occur mostly idle |
| $kW_{peak}$            | = peak demand savings                                           |
| HOU                    | = Annual compressor hours of use                                |

The table below presents ex ante and ex post energy savings, verified hours of operation, CFM of the repaired leak, and the compressor flow per kW.

| Measure                | CFM<br>Repaired | Compressor<br>SCFM/kW | HOU   | Ex Ante Gross<br>kWh Savings | Ex Post Gross<br>kWh Savings | Gross<br>Realization<br>Rate |
|------------------------|-----------------|-----------------------|-------|------------------------------|------------------------------|------------------------------|
| Repair plant air leaks | 38.2            | 5.7                   | 8,760 | 34,001                       | 34,001                       | 100%                         |
| Total                  |                 |                       |       | 34,001                       | 34,001                       | 100%                         |

## Custom Air Compressor Leak Calculation Inputs

## Results

|                  | 0, 1    |         | 2                   |                     |
|------------------|---------|---------|---------------------|---------------------|
|                  |         | Ex Post |                     |                     |
| Measure Category | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |
| Air Compressor   | 34,001  | 34,001  | 100%                | 3.9                 |
| Total            | 34,001  | 34,001  | 100%                | 3.9                 |

## Gross Energy Impacts Summary

The ex post annual energy savings are 34,001 kWh and the ex post peak demand reduction is 3.9 kW. The energy gross realization rate is 100%. While both the ex ante and ex post referenced the same savings method, the ex post utilizes the expression for fractional power as FPo +(1-FPo)x FC and the ex ante applies the expression FPo to the product of air flow and power. In this case they were equal, as the FPo selected by both the ex ante and ex post was 0.5, (with FC = 0).

## Project Number 218

#### **Executive Summary**

Under projects 218, a program participant received custom incentives from I&M for custom lighting measures for the building interior and exterior lighting. The ex post annual energy savings are 484,247 kWh with ex post peak demand reduction of 62.33 kW. The project energy savings gross realization rate is 81%.

#### **Project Description**

The customer installed efficient lighting during building new construction that exceeded the codebased lighting power density allowed wattage.

## **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Allowed \ LPD - Installed \ LPD}{1000}\right) \times Footage \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Allowed \ LPD - Installed \ LPD}{1000}\right) \times Footage \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                                        |
|------------------------|--------------------------------------------------------------------------------|
| Allowed LPD            | = Allowed lighting power density per square foot per ASHRAE Standard 90.1-2007 |
| Installed LPD          | = Installed lighting power density per square foot                             |
| Footage                | = Square footage of new construction space                                     |
| HOU                    | = Indicates hours of usage for the fixture                                     |
| $HCIF_{e}$             | = Heating and Cooling Interactive Factor                                       |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours              |
| CF                     | = Coincidence Factor for Peak Demand hours                                     |

The tables below present the code allowed wattage, prorated to each fixture for comparison, the expected lighting hours of operation, and the heating and cooling interactive factors associated with each of the areas. The allowed wattage for each area based on units of square feet or linear feet is referenced from the *ASHRAE 90.1 2007* standards for the hospital building type.

| HoursHoursHoursInteractionkWh SavingsInterior LED Panel209301094,3801.1269,359Interior LED Panel13451634,3801.1269,369Interior LED Recessed2126944,3801.1282,302Interior LED Panel248301094,3801.122,655Interior LED Panel41451634,3801.122,655Interior LED Panel178381384,3801.1274,824Interior LED Panel178381384,3801.1274,824Interior LED Panel178381384,3801.1274,824Interior LED Recessed41177624,3801.121,482Interior LED Recessed5301094,3801.121,482Interior LED Recessed4177624,3801.121,482Interior LED Recessed41383724,3001.004,023Uncovered Parking Areas LED Pole41383724,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,029Uncovered Parking Areas LED Pole11253374,3001.0024,940Uncovered Parking Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | ig Power I<br>Quantity | , v     | tage      |       | Heating<br>Cooling | Ex Post Gross |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|---------|-----------|-------|--------------------|---------------|
| Interior LED Panel         13         45         163         4,380         1.12         6,471           Interior LED Recessed         21         26         94         4,380         1.12         6,040           Interior LED Panel         248         30         109         4,380         1.12         26,040           Interior LED Panel         41         45         163         4,380         1.12         2,655           Interior LED Panel         41         45         163         4,380         1.12         2,655           Interior LED Panel         178         38         138         4,380         1.12         74,824           Interior LED Recessed         4         17         62         4,380         1.12         17,257           Interior LED Recessed         4         17         62         4,380         1.12         1,482           Interior LED Strip         35         30         109         4,380         1.12         14,615           Non DLC Lighting         63         150         46         4,380         1.12         32,058           Uncovered Parking Areas LED Pole         4         138         372         4,300         1.00         4,023 </td <td>Measure</td> <td></td> <td>Allowed</td> <td>Efficient</td> <td>Hours</td> <td>Interaction</td> <td></td> | Measure                               |                        | Allowed | Efficient | Hours | Interaction        |               |
| Interior LED Recessed         21         26         94         4,380         1.12         6,040           Interior LED Panel         248         30         109         4,380         1.12         2,655           Interior LED Panel         8         30         109         4,380         1.12         2,655           Interior LED Panel         41         45         163         4,380         1.12         20,410           Interior LED Panel         178         38         138         4,380         1.12         74,824           Interior LED High Bay         12         130         471         4,380         1.12         17,257           Interior LED Recessed         4         17         62         4,380         1.12         14,82           Interior LED Strip         35         30         109         4,380         1.12         14,82           Interior LED Strip         35         30         109         4,380         1.12         32,058           Uncovered Parking Areas LED Pole         4         138         372         4,300         1.00         4,001           Uncovered Parking Areas LED Pole 2H         1         276         744         4,300         1.00         <                                                                                                   | Interior LED Panel                    | 209                    | 30      | 109       | 4,380 | 1.12               | 69,359        |
| Interior LED Panel248301094,3801.1282,302Interior LED Panel8301094,3801.122,655Interior LED Panel41451634,3801.1220,410Interior LED Panel178381384,3801.1274,824Interior LED Recessed417624,3801.1217,257Interior LED Recessed417624,3801.1214,82Interior LED Pendant2672434,3801.1211,615Non DLC Lighting63150464,3801.1232,058Uncovered Parking Areas LED Pole41383724,3001.004,001Uncovered Parking Areas LED Pole31834934,3001.002,011Uncovered Parking Areas LED Pole21383724,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,029Uncovered Parking Areas LED Pole11253374,3001.002,049Uncovered Parking Areas LED Pole11253374,3001.002,4940Walkway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Interior LED Panel                    | 13                     | 45      | 163       | 4,380 | 1.12               | 6,471         |
| Interior LED Panel         100         4,380         1.12         2,655           Interior LED Panel         41         45         163         4,380         1.12         20,410           Interior LED Panel         178         38         138         4,380         1.12         174,824           Interior LED Recessed         44         17         62         4,380         1.12         17,257           Interior LED Pendant         2         67         243         4,380         1.12         14,82           Interior LED Strip         35         30         109         4,380         1.12         14,82           Interior LED Strip         35         30         109         4,380         1.12         11,615           Non DLC Lighting         63         150         46         4,380         1.12         32,058           Uncovered Parking Areas LED Pole         4         138         372         4,300         1.00         4,001           Uncovered Parking Areas LED Pole         3         183         493         4,300         1.00         2,011           Uncovered Parking Areas LED Pole         1         125         337         4,300         1.00         2,011                                                                                                              | Interior LED Recessed                 | 21                     | 26      | 94        | 4,380 | 1.12               | 6,040         |
| Interior LED Panel         61         60         100         1112         20,410           Interior LED Panel         178         38         138         4,380         1.12         74,824           Interior LED High Bay         12         130         471         4,380         1.12         17,257           Interior LED Recessed         4         17         62         4,380         1.12         17,257           Interior LED Pendant         2         67         243         4,380         1.12         14,82           Interior LED Strip         35         30         109         4,380         1.12         14,82           Uncovered Parking Areas LED Pole         4         138         372         4,300         1.00         4,023           Uncovered Parking Areas LED Pole         3         183         493         4,300         1.00         4,001           Uncovered Parking Areas LED Pole         3         183         4930         1.00         8,002           Uncovered Parking Areas LED Pole         1         125         337         4,300         1.00         2,011           Uncovered Parking Areas LED Pole         1         125         337         4,300         1.00         2,02                                                                                     | Interior LED Panel                    | 248                    | 30      | 109       | 4,380 | 1.12               | 82,302        |
| Interior LED Panel178381384,3801.1274.824Interior LED High Bay121304714,3801.1217,257Interior LED Recessed417624,3801.1217,257Interior LED Pendant2672434,3801.1211,482Interior LED Strip35301094,3801.1211,615Non DLC Lighting63150464,3801.1232,058Uncovered Parking Areas LED Pole41383724,3001.004,023Uncovered Parking Areas LED Pole12767444,3001.002,011Uncovered Parking Areas LED Pole31834934,3001.008,002Uncovered Parking Areas LED Pole21383724,3001.008,002Uncovered Parking Areas LED Pole11253374,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Interior LED Panel                    | 8                      | 30      | 109       | 4,380 | 1.12               | 2,655         |
| Interior LED High Bay1121304714,3801.1217,257Interior LED Recessed417624,3801.1217,257Interior LED Pendant2672434,3801.121,482Interior LED Strip35301094,3801.1211,615Non DLC Lighting63150464,3801.1232,058Uncovered Parking Areas LED Pole41383724,3001.004,023Uncovered Parking Areas LED Pole31834934,3001.002,011Uncovered Parking Areas LED Pole31834934,3001.008,002Uncovered Parking Areas LED Pole31384934,3001.008,002Uncovered Parking Areas LED Pole11253374,3001.008,002Uncovered Parking Areas LED Pole11253374,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,4940Walkways (<10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Interior LED Panel                    | 41                     | 45      | 163       | 4,380 | 1.12               | 20,410        |
| Interior LED Recessed417624,3801.12752Interior LED Pendant2672434,3801.121,482Interior LED Strip35301094,3801.1211,615Non DLC Lighting63150464,3801.1232,058Uncovered Parking Areas LED Pole41383724,3001.004,023Uncovered Parking Areas LED Pole41383724,3001.002,011Uncovered Parking Areas LED Pole31834934,3001.004,001Uncovered Parking Areas LED Pole31834934,3001.008,002Uncovered Parking Areas LED Pole21383724,3001.002,011Uncovered Parking Areas LED Pole21383724,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,929Uncovered Parking Areas LED Pole11251354,300 <td>Interior LED Panel</td> <td>178</td> <td>38</td> <td>138</td> <td>4,380</td> <td>1.12</td> <td>74,824</td>                                                                                                                                                                                                                                                                                                                                    | Interior LED Panel                    | 178                    | 38      | 138       | 4,380 | 1.12               | 74,824        |
| Interior LED Pendant2672434,3801.121,482Interior LED Strip35301094,3801.1211,615Non DLC Lighting63150464,3801.1232,058Uncovered Parking Areas LED Pole41383724,3001.004,023Uncovered Parking Areas LED Pole12767444,3001.002,011Uncovered Parking Areas LED Pole31834934,3001.004,001Uncovered Parking Areas LED Pole33669864,3001.008,002Uncovered Parking Areas LED Pole21383724,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.009,029Uncovered Parking Areas LED Pole11253374,3001.009,029Uncovered Parking Areas LED Pole11253374,3001.001,822Other Building Doors LED Wall pack4501,5004,3001.0024,940Walkways (<10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Interior LED High Bay                 | 12                     | 130     | 471       | 4,380 | 1.12               | 17,257        |
| Interior LED Strip $35$ $30$ $109$ $4,380$ $1.12$ $11,615$ Non DLC Lighting $63$ $150$ $46$ $4,380$ $1.12$ $32,058$ Uncovered Parking Areas LED Pole $4$ $138$ $372$ $4,300$ $1.00$ $4,023$ Uncovered Parking Areas LED Pole $4$ $138$ $372$ $4,300$ $1.00$ $2,011$ Uncovered Parking Areas LED Pole $3$ $183$ $493$ $4,300$ $1.00$ $2,011$ Uncovered Parking Areas LED Pole $3$ $183$ $493$ $4,300$ $1.00$ $8,002$ Uncovered Parking Areas LED Pole $2$ $138$ $372$ $4,300$ $1.00$ $2,011$ Uncovered Parking Areas LED Pole $2$ $138$ $372$ $4,300$ $1.00$ $8,002$ Uncovered Parking Areas LED Pole $2$ $138$ $372$ $4,300$ $1.00$ $2,011$ Uncovered Parking Areas LED Pole $1$ $125$ $337$ $4,300$ $1.00$ $2,011$ Uncovered Parking Areas LED Pole $1$ $125$ $337$ $4,300$ $1.00$ $2,011$ Uncovered Parking Areas LED Pole $1$ $250$ $674$ $4,300$ $1.00$ $2,011$ Uncovered Parking Areas LED Pole $1$ $250$ $674$ $4,300$ $1.00$ $2,929$ Uncovered Parking Areas LED Pole $1$ $125$ $337$ $4,300$ $1.00$ $24,940$ Walkways (<10 ft wide) LED Wall pack                                                                                                                                                                                                                                                              | Interior LED Recessed                 | 4                      | 17      | 62        | 4,380 | 1.12               | 752           |
| Non DLC Lighting63150464,3801.1232,058Uncovered Parking Areas LED Pole41383724,3001.004,023Uncovered Parking Areas LED Pole12767444,3001.002,011Uncovered Parking Areas LED Pole31834934,3001.004,001Uncovered Parking Areas LED Pole31834934,3001.008,002Uncovered Parking Areas LED Pole21383724,3001.008,002Uncovered Parking Areas LED Pole21383724,3001.002,011Uncovered Parking Areas LED Pole51383724,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.001,822Other Building Doors LED Wall pack4501,5004,3001.0024,940Walkways (<10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Interior LED Pendant                  | 2                      | 67      | 243       | 4,380 | 1.12               | 1,482         |
| Uncovered Parking Areas LED Pole41383724,3001.004,023Uncovered Parking Areas LED Pole 2H12767444,3001.002,011Uncovered Parking Areas LED Pole31834934,3001.004,001Uncovered Parking Areas LED Pole31834934,3001.004,001Uncovered Parking Areas LED Pole21383724,3001.008,002Uncovered Parking Areas LED Pole21383724,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.002,019Uncovered Parking Areas LED Pole11253374,3001.00911Uncovered Parking Areas LED Pole11253374,3001.001,822Other Building Doors LED Wall pack4501,5004,3001.0024,940Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Interior LED Strip                    | 35                     | 30      | 109       | 4,380 | 1.12               | 11,615        |
| Uncovered Parking Areas LED Pole 2H12767444,3001.002,011Uncovered Parking Areas LED Pole31834934,3001.004,001Uncovered Parking Areas LED Pole 2H33669864,3001.008,002Uncovered Parking Areas LED Pole 2H33669864,3001.008,002Uncovered Parking Areas LED Pole21383724,3001.002,011Uncovered Parking Areas LED Pole51383724,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.009,029Uncovered Parking Areas LED Pole11253374,3001.009,029Uncovered Parking Areas LED Pole 2H12506744,3001.001,822Other Building Doors LED Wall pack4501,5004,3001.0024,940Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Non DLC Lighting                      | 63                     | 150     | 46        | 4,380 | 1.12               | 32,058        |
| Uncovered Parking Areas LED Pole31834934,3001.004,001Uncovered Parking Areas LED Pole33669864,3001.008,002Uncovered Parking Areas LED Pole21383724,3001.002,011Uncovered Parking Areas LED Pole21383724,3001.002,011Uncovered Parking Areas LED Pole51383724,3001.002,011Uncovered Parking Areas LED Pole11253374,3001.00911Uncovered Parking Areas LED Pole11253374,3001.001,822Other Building Doors LED Wall pack4501,5004,3001.0024,940Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Uncovered Parking Areas LED Pole      | 4                      | 138     | 372       | 4,300 | 1.00               | 4,023         |
| Uncovered Parking Areas LED Pole 2H3 $366$ $986$ $4,300$ $1.00$ $8,002$ Uncovered Parking Areas LED Pole2 $138$ $372$ $4,300$ $1.00$ $2,011$ Uncovered Parking Areas LED Pole5 $138$ $372$ $4,300$ $1.00$ $2,011$ Uncovered Parking Areas LED Pole1 $125$ $337$ $4,300$ $1.00$ $2,011$ Uncovered Parking Areas LED Pole1 $125$ $337$ $4,300$ $1.00$ $911$ Uncovered Parking Areas LED Pole1 $250$ $674$ $4,300$ $1.00$ $1,822$ Other Building Doors LED Wall pack4 $50$ $1,500$ $4,300$ $1.00$ $24,940$ Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Uncovered Parking Areas LED Pole 2H   | 1                      | 276     | 744       | 4,300 | 1.00               | 2,011         |
| Uncovered Parking Areas LED Pole21383724,3001.002,011Uncovered Parking Areas LED Pole51383724,3001.002,011Uncovered Parking Areas LED Pole51383724,3001.005,029Uncovered Parking Areas LED Pole11253374,3001.00911Uncovered Parking Areas LED Pole 2H12506744,3001.001,822Other Building Doors LED Wall pack4501,5004,3001.0024,940Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Uncovered Parking Areas LED Pole      | 3                      | 183     | 493       | 4,300 | 1.00               | 4,001         |
| Uncovered Parking Areas LED Pole51383724,3001.005,029Uncovered Parking Areas LED Pole11253374,3001.00911Uncovered Parking Areas LED Pole 2H1250 $674$ 4,3001.00911Uncovered Parking Areas LED Pole 2H1250 $674$ 4,3001.001,822Other Building Doors LED Wall pack4501,5004,3001.0024,940Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Uncovered Parking Areas LED Pole 2H   | 3                      | 366     | 986       | 4,300 | 1.00               | 8,002         |
| Uncovered Parking Areas LED Pole11253374,3001.00911Uncovered Parking Areas LED Pole 2H12506744,3001.001,822Other Building Doors LED Wall pack4501,5004,3001.0024,940Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Uncovered Parking Areas LED Pole      | 2                      | 138     | 372       | 4,300 | 1.00               | 2,011         |
| Other Hulting Hields LED Fold11255571,5001Uncovered Parking Areas LED Pole 2H1250 $674$ $4,300$ $1.00$ $1,822$ Other Building Doors LED Wall pack450 $1,500$ $4,300$ $1.00$ $24,940$ Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Uncovered Parking Areas LED Pole      | 5                      | 138     | 372       | 4,300 | 1.00               | 5,029         |
| Other Building Doors LED Wall pack4501,5004,3001.0024,940Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Uncovered Parking Areas LED Pole      | 1                      | 125     | 337       | 4,300 | 1.00               | 911           |
| Walkways (< 10 ft wide) LED Wall pack7251354,3001.003,310Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Uncovered Parking Areas LED Pole 2H   | 1                      | 250     | 674       | 4,300 | 1.00               | 1,822         |
| Walkways (< 10 ft wide) LED Wall pack26502704,3001.0024,586Walkways (< 10 ft wide) LED Wall pack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Other Building Doors LED Wall pack    | 4                      | 50      | 1,500     | 4,300 | 1.00               | 24,940        |
| Walkways (< 10 ft wide) LED Wall pack5502704,3001.004,728Walkways (< 10 ft wide) LED Pole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Walkways (< 10 ft wide) LED Wall pack | 7                      | 25      | 135       | 4,300 | 1.00               | 3,310         |
| Walkways ( $\geq 10$ ft wide), LED Pole11387454,3001.002,610Walkways ( $\geq 10$ ft wide), LED Wall pack16251204,3001.006,553Walkways ( $\geq 10$ ft wide), LED Wall pack31502404,3001.0025,393Walkways ( $\geq 10$ ft wide), LED Pole31386644,3001.006,782Walkways ( $\geq 10$ ft wide), LED Pole41386644,3001.009,043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Walkways (< 10 ft wide) LED Wall pack | 26                     | 50      | 270       | 4,300 | 1.00               | 24,586        |
| Walkways ( $\geq 10$ ft wide), LED Wall pack16251204,3001.006,553Walkways ( $\geq 10$ ft wide), LED Wall pack31502404,3001.0025,393Walkways ( $\geq 10$ ft wide), LED Pole31386644,3001.006,782Walkways ( $\geq 10$ ft wide), LED Pole41386644,3001.009,043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Walkways (< 10 ft wide) LED Wall pack | 5                      | 50      | 270       | 4,300 | 1.00               | 4,728         |
| Walkways ( $\geq 10$ ft wide), LED Pole31502404,3001.0025,393Walkways ( $\geq 10$ ft wide), LED Pole31386644,3001.006,782Walkways ( $\geq 10$ ft wide), LED Pole41386644,3001.009,043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Walkways (< 10 ft wide) LED Pole      | 1                      | 138     | 745       | 4,300 | 1.00               | 2,610         |
| Walkways ( $\geq 10$ ft wide), LED Pole       3       138       664       4,300       1.00       6,782         Walkways ( $\geq 10$ ft wide), LED Pole       4       138       664       4,300       1.00       9,043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Walkways (≥ 10ft wide), LED Wall pack | 16                     | 25      | 120       | 4,300 | 1.00               | 6,553         |
| Walkways ( $\geq 10$ ft wide), LED Pole     4     138     664     4,300     1.00     9,043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Walkways (≥ 10ft wide), LED Wall pack | 31                     | 50      | 240       | 4,300 | 1.00               | 25,393        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Walkways (≥ 10ft wide), LED Pole      | 3                      | 138     | 664       | 4,300 | 1.00               | 6,782         |
| Canopies LED Recessed         38         26         168         4,300         1.00         23,266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Walkways (≥ 10ft wide), LED Pole      | 4                      | 138     | 664       | 4,300 | 1.00               | 9,043         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Canopies LED Recessed                 | 38                     | 26      | 168       | 4,300 | 1.00               | 23,266        |

Lighting Power Density Calculations

| Measure                        | Code Baseline |        | Installed<br>Watts | Hours  | Ex Ante<br>Annual<br>kWh | Ex Post Gross<br>kWh Savings | Gross<br>Realization | Ex Post<br>Gross kW |         |
|--------------------------------|---------------|--------|--------------------|--------|--------------------------|------------------------------|----------------------|---------------------|---------|
|                                | Standard      | Size   | Watts              |        |                          | Savings                      | 0                    | Rate                | Savings |
| Interior                       | 1.2 w/sf      | 79,995 | 95,994             | 26,502 | 4,380                    | 176,019                      | 325,225              | 185%                | 62.33   |
| Uncovered Parking Areas        | 0.12 w/sf     | 68,556 | 10,283             | 3,816  | 4,300                    | 27,810                       | 27,810               | 100%                | 0       |
| Other Building Doors           | 20 w/lf       | 20     | 6,000              | 200    | 4,300                    | 302,118                      | 24,940               | 8%                  | 0       |
| Walkways (< 10 ft wide)        | 1.0 w/lf      | 10,057 | 10,057             | 1,863  | 4,300                    | 35,234                       | 35,234               | 100%                | 0       |
| Walkways ( $\geq 10$ ft wide), | 0.2 w/sf      | 70,128 | 14,026             | 2,916  | 4,300                    | 47,771                       | 47,771               | 100%                | 0       |
| Canopies                       | 1.25 w/sf     | 5,119  | 6,399              | 988    | 4,300                    | 23,266                       | 23,266               | 100%                | 0       |
| Total                          |               |        |                    |        |                          | 612,219                      | 484,247              | 81%                 | 62.33   |

| Custom Lighting | Energy Savings | Calculations |
|-----------------|----------------|--------------|
|-----------------|----------------|--------------|

## Results

Gross Energy Impacts Summary

|                           |         | kWh Savings |                     |                     |  |
|---------------------------|---------|-------------|---------------------|---------------------|--|
| Measure Category          | Ex Ante | Ex Post     | Realization<br>Rate | Gross kW<br>Savings |  |
| New Construction Lighting | 612,219 | 484,247     | 81%                 | 62.33               |  |
| Total                     | 612,219 | 484,247     | 81%                 | 62.33               |  |

The ex post annual energy savings are 484,247 kWh and the ex post peak demand reduction is 62.33kW. The energy gross realization rate is 81%. The differences in savings between the exterior and interior areas are provided below.

- The ex ante applied the value of 3,523 feet for the total building door width from the electrical Comcheck. The project only installed four 50W LED exterior fixtures for this building entrance area. The usage of lighting power density in ASHRAE 90.1 is qualified by "lighted" or "illuminated" areas for applying the allowance based on square feet or linear feet. The ex post analysis set the evaluation boundary at the building entrance area as described on the Comcheck as "ambulance entrance" and verified the quantity of fixtures from the electrical lighting drawing with a corresponding linear feet for the illuminated area. The realized savings were 8% of expected.
- The ex post determined the code based interior lighting power allowance on the total square footage, and all installed lighting, both DLC qualified and not qualified. The ASHRAE 90.1 lighting allowance considers both efficient equipment and efficient design utilizing natural light. Inclusion of the total area considers both factors. The ex ante savings prorated the interior installation square feet, based on the percentage of qualified DLC lighting wattage (65%).

## Project Number 207

#### **Executive Summary**

Under project 207, a program participant received custom incentives from I&M for replacement of refrigerated space loading door weather seals. The ex post annual energy savings are 322,815 kWh with ex post peak demand reduction of 99.67 kW. The project energy savings gross realization rate is 44%.

#### **Project Description**

The customer received custom incentives for replacing weather seals around the loading door frames leading to a buffer zone space to frozen food storage warehouses. The existing gaps averaged  $\frac{1}{2}$ " for 152 lineal feet,  $\frac{5}{8}$ " for 88 lineal feet,  $\frac{3}{4}$ " for 344 lineal feet,  $\frac{7}{8}$ " for 96 lineal feet and 1" for 88 lineal feet.

## **Measurement and Verification Effort**

Through email and a phone call with the warehouse manager, the installation of new dock seals was verified along with the dates of the installation. The ex ante savings were determined by deemed savings per linear foot and width of the failed dock door seal. The initial effort validated the annual savings per foot values by applying the tables from the *ASHRAE Cooling and Heating Load Calculation manual* for Ft Wayne TMY3 weather data. The infiltration was based on the differential pressure due to stack effect wind speed, velocity head, and the building type. The sum of the hourly bin savings replicated the annual ex ante deemed savings values.

|   |         | kWh/ft  | kWh/ft   | kWh 3/4" | kWh/ft   | kWh/ft 1" |
|---|---------|---------|----------|----------|----------|-----------|
|   |         | 1/2"Gap | 5/8" Gap | Gap      | 7/8" Gap | Gap       |
|   | Ex-Ante | 645     | 806      | 968      | 1129     | 1291      |
| ſ | Ex-Post | 649     | 812      | 974      | 1136     | 1298      |

Weather Seal Energy Savings per Foot by Gap Size for Low Temp Space

The savings per unit are based on the temperature difference between low temperature freezer space and the outdoor air, occurring 8,760 hours per year. The project replaced the weather seal between the moving door and the frame, for the space entering the buffer zone, to low temperature space. The assumption can be made that during the workday, the buffer zone and low temperature space will reach equilibrium due to the warehousing of materials from the truck to dock. However, during unoccupied periods, the buffer zone temperature will normalize to the outdoor temperature or a tempered setpoint, with the low temperature space insulated by their own freezer doors. Also, when the exterior loading dock door is in the up position while a trailer is adjacent to the dock seal pads, will not rely on the door weather seals for exterior infiltration reduction.

To determine savings, the ex post analysis applied the number of work hours, work days, trucks loaded, and dock doors to the 8,760 weather bin analysis for the gap size identified in their repair tracking worksheet.

|      | Ft and $kWh$ | Ft and<br>kWh<br>5/8" | <i>Ft and</i><br><i>kWh</i><br><sup>3/4</sup> " | Ft and<br>kWh<br>7/8" | Ft and<br>kWh<br>1" | Total Ft<br>Total<br>kWh |
|------|--------------|-----------------------|-------------------------------------------------|-----------------------|---------------------|--------------------------|
| Feet | 152          | 88                    | 344                                             | 96                    | 88                  | 768                      |
| kWh  | 43,693       | 32,667                | 148,451                                         | 48,352                | 50,651              | 322,815                  |

Weatherstrip Energy Savings by Gap and Length

#### Results

|                          |         |         | •                   |                     |
|--------------------------|---------|---------|---------------------|---------------------|
|                          |         | Ex Post |                     |                     |
| Measure Category         | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |
| Custom Building Envelope | 728,351 | 322,815 | 44%                 | 99.67               |
| Total                    | 728,351 | 322,815 | 44%                 | 99.67               |

#### Gross Energy Impacts Summary

The ex post annual energy savings are 322,815kWh and the ex post peak demand reduction is 99.67 kW. The energy gross realization rate is 44%. The ex post savings were impacted as follows:

• The ex ante deemed energy savings values by gap and length are based on the infiltration losses between annual outdoor weather and refrigerated space. The ex post method replicated the deemed savings across an 8760 weather profile based on local weather data and wind speed. As the weatherization was installed on doors between the outdoor weather and an indoor buffer zone, full savings can be expected only when the buffer zone temperature equalizes with the refrigeration space, during warehousing operations.

#### **Ancillary Econometric Analysis**

An additional Option C – Whole Facility analysis was completed with monthly billing energy day and heating, cooling degree days using the following equation.

 $kWh_{monthly} = CDD + HDD + Post_Flag + Intercept$ 

Where:

| CDD       | = Cooling Degree Days for a given month and calibrated to a base temperature of $65^{\circ}F$              |
|-----------|------------------------------------------------------------------------------------------------------------|
| HDD       | = Heating Degree Days for a given month in the post period calibrated to base temperature of $55^{\circ}F$ |
| Post_Flag | = Binary flag for post-project completion month. $1 = Post Period$ , $0 = Pre Period$                      |
| Intercept | = Y intercept                                                                                              |

The results of the ancillary econometric analysts are presented in the table below:

| Coefficients | Value    | T-Statistic |  |  |
|--------------|----------|-------------|--|--|
| CDD          | 194      | 5.2         |  |  |
| HDD          | -59      | 3.7         |  |  |
| Post_Flag    | (12,886) | 1.6         |  |  |
| Intercept    | 351,000  | 35          |  |  |

The *Post\_Flag* coefficient is associated with an estimate of annual energy savings of 154,630 kWh, which is equal to 48% of the realized savings estimate. Although the regression-based savings estimate is less than the engineering equation analysis, both are much less (55% to 78%) than the ex ante savings of 728,352 kWh. The IPMVP Option-A analysis of 322,815 kWh energy savings with the Option-C analysis of 154,630 kWh, indicate that the deemed ex-ante savings values determined the ex-ante savings of 728,352 kWh, overestimated the savings per foot for weather seals installed to dock doors sealing the buffer zone. For direct exterior door sealing, the deemed values would be appropriate.

## Project Number 204

#### **Executive Summary**

Under project 204, a program participant received custom incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 504,092 kWh with ex post peak demand reduction of 44.34 kW. The project energy savings gross realization rate is 100%.

#### **Project Description**

The customer received custom incentives for replacing 10 lamp T5 high output high bay fixtures with (187) LED high bay fixtures in a manufacturing facility.

## **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| $HCIF_{e}$             | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The table below presents ex ante and ex post energy savings, verified lighting hours of operation, and the heating and cooling interactive factors associated with the lighting equipment installed under the project.

| Measure                         | Quantity (Fixtures) Wate |           | Wattage Hours |           | Heating<br>Cooling | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |      |
|---------------------------------|--------------------------|-----------|---------------|-----------|--------------------|-----------------------|---------------|----------------------|------|
|                                 | Baseline                 | Efficient | Baseline      | Efficient | nours              | Interaction<br>Factor | Savings       | kWh Savings          | Rate |
| 10L T5HO 54W to LED<br>High bay | 187                      | 187       | 596           | 284       | 8,640              | 1.0                   | 504,092       | 504,092              | 100% |
| Total                           |                          |           |               |           |                    |                       |               | 504,092              | 100% |

# Custom Lighting Energy Savings Calculations

#### Results

## Gross Energy Impacts Summary

|                  |         | Ex Post |                     |                     |  |
|------------------|---------|---------|---------------------|---------------------|--|
| Measure Category | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |  |
| Custom Lighting  | 504,092 | 504,092 | 100%                | 44.34               |  |
| Total            | 504,092 | 504,092 | 100%                | 44.34               |  |

The ex post annual energy savings are 504,092 kWh and the ex post peak demand reduction is 44.34 kW. The energy gross realization rate is 100%.

## Project Number 213

#### **Executive Summary**

Under project 213, a program participant received custom incentives from I&M for replacement of refrigerated space loading door weather seals. The ex post annual energy savings are 410,260 kWh with ex post peak demand reduction of 46.83 kW. The project energy savings gross realization rate is 49%.

#### **Project Description**

The customer received custom incentives for replacing weather seals around the loading door frames leading to a buffer zone space to frozen food storage warehouses. The existing gaps averaged  $\frac{1}{2}$ " for 156 lineal feet,  $\frac{5}{8}$ " for 78 lineal feet,  $\frac{3}{4}$ " for 78 lineal feet,  $\frac{7}{8}$ " for 84 lineal feet, 1" for 288 lineal feet, 1  $\frac{1}{8}$ " for 36 lineal feet, 1  $\frac{3}{4}$ " for 36 lineal feet.

#### **Measurement and Verification Effort**

Through email and a phone call with the warehouse manager, the installation of new dock seals was verified, along with the dates of the installation. The ex ante savings were determined by deemed savings per linear foot and width of the failed dock door seal. The initial effort validated the annual savings per foot values by applying the tables from the *ASHRAE Cooling and Heating Load Calculation* manual for Ft Wayne TMY3 weather data. The infiltration was based on the differential pressure due to stack effect wind speed, velocity head, and the building type. The sum of the hourly bin savings replicated the annual ex ante deemed savings values.

|         | kWh/ft | kWh/ft | kW/ft                         | kWh/ft | kWh/ft | kWh/ft | kWh/ft                          |
|---------|--------|--------|-------------------------------|--------|--------|--------|---------------------------------|
|         | 1/2 '' | 5/8"   | <sup>3</sup> / <sub>4</sub> " | 7/8"   | 1"     | 1 1/8" | 1 <sup>3</sup> / <sub>4</sub> " |
| Ex Ante | 649    | 812    | 974                           | 1136   | 1298   | 1461   | 2272                            |
| Ex Post | 645    | 809    | 968                           | 1129   | 1300   | 1461   | 2277                            |

Weather Seal Energy Savings per Foot by Gap Size for Low Temp Space

The savings per unit are based on the temperature difference between low temperature freezer space and the outdoor air, occurring 8,760 hours per year. The project replaced the weather seal between the moving door and the frame for the space entering the buffer zone to the low temperature space. The assumption can be made that during the workday, the buffer zone and low temperature space will reach equilibrium due to the warehousing of materials from the truck to the dock. However, during unoccupied periods, the buffer zone temperature will normalize to the outdoor temperature, with the low temperature space insulated by the freezer dock doors. Also, an exterior loading dock door in the up position when a truck is adjacent, will not rely on the door weather seals.

To determine savings, the ex post analysis applied the number of work hours, work days, trucks loaded, and dock doors to the 8760 weather bin analysis. For this analysis, we used the following information:

- Warehousing hours 6AM to 11PM, Monday to Friday
- Hours dock doors raised position, averaged at 2.35 hour per door.

|      | Ft and kWh $\frac{1}{2}$ " | Ft and kWh<br>5/8" | Ft and kWh<br>¾" | Ft and kWh<br>7/8" | Ft and kWh<br>1" | Ft and kWh<br>1 1/8" | Ft and kWh<br>1 ¾" | Feet Total<br>kWh Total |
|------|----------------------------|--------------------|------------------|--------------------|------------------|----------------------|--------------------|-------------------------|
| Feet | 156                        | 78                 | 78               | 84                 | 288              | 36                   | 36                 | 756                     |
| kWh  | 50,639                     | 25,298             | 38,275           | 38,133             | 189,709          | 26,651               | 41,552             | 410,260                 |

Weatherstrip Energy Savings by Gap and Length

## Results

|                          |         |             | 2                   |                     |
|--------------------------|---------|-------------|---------------------|---------------------|
|                          |         | kWh Savings |                     | Ex Post             |
| Measure Category         | Ex Ante | Ex Post     | Realization<br>Rate | Gross kW<br>Savings |
| Custom Building Envelope | 844,242 | 410,260     | 49%                 | 46.83               |
| Total                    | 844,242 | 410,260     | 49%                 | 46.83               |

Gross Energy Impacts Summary

The ex post annual energy savings are 410,260 kWh and the ex post peak demand reduction is 46.83 kW. The energy gross realization rate is 49%.

The deemed savings that used the size of the gap and local weather assumed that infiltration occurs 8,760 hours per year and that the temperature differential is a function of the outdoor weather conditions and a low temperature (freezer) space. However, the installed weather seals are in an area between the outdoor weather conditions and the indoor loading dock, which acts as a buffer zone between the exterior weather conditions and the low temperature (freezer) space. As a result, the temperature differential used in the expost savings analysis differs from the differential between the freezer space and the exterior weather conditions that was used in the ex ante savings analysis. The expost savings utilized the same method as the ex ante analysis to determine air infiltration based on local weather temperature, wind speed, stack effect along with the warehouse operating schedule.

## Project Number 117 and 121

#### **Executive Summary**

Under projects 117 and 121, a program participant received prescriptive incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 377,239 kWh with ex post peak demand reduction of 13.1 kW. The site energy savings gross realization rate is 137%.

#### **Project Description**

The program participant received prescriptive incentives for replacing metal halide lamp fixtures and T8 linear fluorescent fixtures with (50) LED wall pack fixtures, (28) LED shoebox fixtures, (72) LED 2x2 panels, and (301) LED recessed Fixtures.

## **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| HCIF <sub>e</sub>      | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The table below presents ex ante and ex post energy savings, verified lighting hours of operation, and heating and cooling interactive factors associated with the lighting equipment installed under the project.

| Measure                            | Quantity (Fixtures) |           | Wattage  |           | Hours  | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|------------------------------------|---------------------|-----------|----------|-----------|--------|-----------------------|-----------------------|---------------|----------------------|
|                                    | Baseline            | Efficient | Baseline | Efficient | 110015 | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| MH100W to LED<br>Wallpack          | 50                  | 50        | 110      | 26        | 4308   | 1                     | 28,750                | 18,094        | 63%                  |
| MH 400W Shoebox to<br>LED Shoebox  | 10                  | 10        | 458      | 149.65    | 4308   | 1                     | 10,800                | 13,284        | 123%                 |
| MH 1000W Shoebox to<br>LED Shoebox | 18                  | 18        | 1080     | 202.86    | 4308   | 1                     | 54,432                | 68,017        | 125%                 |
| 2L T8 Ubend to LED 2x2<br>Panel    | 72                  | 72        | 53       | 40        | 8530   | 1.103                 | 8,709                 | 8,806         | 101%                 |
| MH100W to LED<br>Recessed          | 301                 | 301       | 110      | 15        | 8530   | 1.103                 | 172,943               | 269,039       | 156%                 |
| Total                              |                     |           |          |           |        |                       | 275,634               | 377,239       | 137%                 |

# Prescriptive Lighting Energy Savings Calculations

#### Results

| Measure Category      |         | Ex Post |                     |                     |
|-----------------------|---------|---------|---------------------|---------------------|
|                       | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |
| Prescriptive Lighting | 275,634 | 377,239 | 137%                | 13.11               |
| Total                 | 275,634 | 377,239 | 137%                | 13.11               |

Gross Energy Impacts Summary

The ex post annual energy savings are 377,239 kWh and the ex post peak demand reduction is 13.11kW. The energy gross realization rate is 137%. The installed fixtures replacing existing fixtures along with their usage hours were greater than the assumptions used to create the ex ante deemed savings per unit. The largest contributor to the higher savings is the 100W metal halide lamps in the hotel common areas that are on 24 hours per day. The site contact confirmed the wattage as 100W for all existing lamps.

## Project Number 102,103,104 and 105

#### **Executive Summary**

Under projects 102,103,104 and 105, a program participant received prescriptive incentives from I&M for installation and retrofit of energy efficient lighting. The ex post annual energy savings are 767,848 kWh with ex post peak demand reduction of 0.00 kW. The project energy savings gross realization rate is 107%.

## **Project Description**

The customer received prescriptive incentives for replacing exterior metal halide lamp pole fixtures with (833) LED street light fixtures.

## **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Watts_{base} \times N_{base} - Watts_{eff} \times N_{eff}}{1000}\right) \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                           |
|------------------------|-------------------------------------------------------------------|
| N                      | = Number of fixtures                                              |
| Watts                  | = Watts of each fixture                                           |
| HOU                    | = Indicates hours of usage for the fixture                        |
| HCIF <sub>e</sub>      | = Heating and Cooling Interactive Factor                          |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours |
| CF                     | = Coincidence Factor for Peak Demand hours                        |
| base                   | = denotes pre-installation state                                  |
| eff                    | = denotes post-installation state                                 |

The table below presents ex ante and ex post energy savings verified lighting hours of operation, and the heating and cooling interactive factors associated with the lighting equipment installed under the project.

| Measure            | Quantity | (Fixtures) | Wat      | tage      | Hours | Heating<br>Cooling    | Ex Ante<br>Annual kWh | Ex Post Gross | Gross<br>Realization |
|--------------------|----------|------------|----------|-----------|-------|-----------------------|-----------------------|---------------|----------------------|
|                    | Baseline | Efficient  | Baseline | Efficient |       | Interaction<br>Factor | Savings               | kWh Savings   | Rate                 |
| MH 190 to LED pole | 44       | 44         | 190      | 54        | 4,380 | 1.00                  | 25,281                | 26,210        | 104%                 |
| MH 146 to LED pole | 2        | 2          | 146      | 111       | 4,380 | 1.00                  | 1,149                 | 307           | 27%                  |
| MH 140 to LED pole | 34       | 34         | 140      | 100       | 4,380 | 1.00                  | 19,535                | 5,957         | 30%                  |
| MH 295 to LED pole | 5        | 5          | 295      | 111       | 4,380 | 1.00                  | 4,104                 | 4,030         | 98%                  |
| MH 295 to LED pole | 8        | 8          | 295      | 100       | 4,380 | 1.00                  | 6,566                 | 6,833         | 104%                 |
| MH 458 to LED pole | 3        | 3          | 458      | 146       | 4,380 | 1.00                  | 3,888                 | 4,100         | 105%                 |
| MH 458 to LED pole | 1        | 1          | 458      | 54        | 4,380 | 1.00                  | 1,296                 | 1,770         | 137%                 |
| MH 458 to LED pole | 18       | 18         | 458      | 111       | 4,380 | 1.00                  | 23,328                | 27,357        | 117%                 |
| MH 190 to LED pole | 53       | 53         | 190      | 54        | 4,380 | 1.00                  | 30,452                | 31,571        | 104%                 |
| MH 135 to LED pole | 2        | 2          | 135      | 100       | 4,380 | 1.00                  | 1,149                 | 307           | 27%                  |
| MH 185 to LED pole | 1        | 1          | 185      | 100       | 4,380 | 1.00                  | 821                   | 372           | 45%                  |
| MH 295 to LED pole | 2        | 2          | 295      | 111       | 4,380 | 1.00                  | 1,642                 | 1,612         | 98%                  |
| MH 295 to LED pole | 45       | 45         | 295      | 100       | 4,380 | 1.00                  | 36,936                | 38,435        | 104%                 |
| MH 458 to LED pole | 138      | 138        | 458      | 100       | 4,380 | 1.00                  | 178,848               | 216,390       | 121%                 |
| MH 458 to LED pole | 3        | 3          | 458      | 111       | 4,380 | 1.00                  | 3,888                 | 4,560         | 117%                 |
| MH 190 to LED pole | 84       | 84         | 190      | 54        | 4,380 | 1.00                  | 48,300                | 50,037        | 104%                 |
| MH 295 to LED pole | 96       | 96         | 295      | 100       | 4,380 | 1.00                  | 78,816                | 81,994        | 104%                 |
| MH 458 to LED pole | 55       | 55         | 458      | 146       | 4,380 | 1.00                  | 71,280                | 75,161        | 105%                 |
| MH 190 to LED pole | 99       | 99         | 190      | 54        | 4,380 | 1.00                  | 56,925                | 58,972        | 104%                 |
| MH 295 to LED pole | 116      | 116        | 295      | 100       | 4,380 | 1.00                  | 95,236                | 99,076        | 104%                 |
| MH 458 to LED pole | 24       | 24         | 458      | 146       | 4,380 | 1.00                  | 31,104                | 32,797        | 105%                 |
| Total              | -        |            |          |           |       |                       | 720,543               | 767,848       | 107%                 |

Prescriptive Lighting Energy Savings Calculations

## Results

| Measure Category      |         | Ex Post |                     |                     |
|-----------------------|---------|---------|---------------------|---------------------|
|                       | Ex Ante | Ex Post | Realization<br>Rate | Gross kW<br>Savings |
| Prescriptive Lighting | 720,543 | 767,848 | 107%                | 0.00                |
| Total                 | 720,543 | 767,848 | 107%                | 0.00                |

The ex post annual energy savings are 767,848 kWh and the ex post peak demand reduction is 0.00 kW. The energy gross realization rate is 107%. The following items impacted the ex post savings:

• The majority of the ex ante energy savings have base wattages that were for the nominal lamp wattage and not the fixture wattages, while the efficient watts were represented by fixture wattage. The ex post analysis was based on fixture to fixture wattages.

## Project Number 211

#### **Executive Summary**

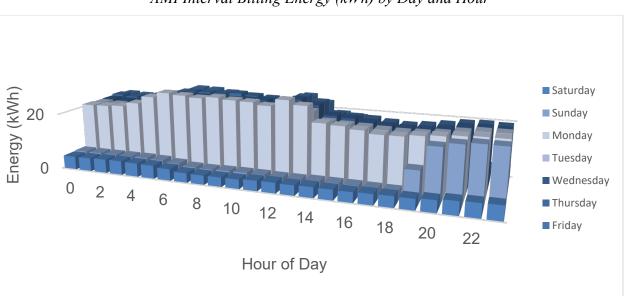
Under projects 211, a program participant received custom incentives from I&M for new construction lighting measures for a new manufacturing facility. The ex post annual energy savings are 884,938 kWh with ex post peak demand reduction of 80.19 kW. The project energy savings gross realization rate is 100%.

## **Project Description**

The customer received custom incentives for the new construction installation of (593) LED interior fixtures and (44) LED exterior fixtures

## **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:


$$kWh_{Savings} = \left(\frac{Allowed \ LPD - Installed \ LPD}{1000}\right) \times Footage \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Allowed \ LPD - Installed \ LPD}{1000}\right) \times Footage \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                                        |
|------------------------|--------------------------------------------------------------------------------|
| Allowed LPD            | = Allowed lighting power density per square foot per ASHRAE Standard 90.1-2007 |
| Installed LPD          | = Installed lighting power density per square foot                             |
| Footage                | = Square footage of new construction space                                     |
| HOU                    | = Indicates hours of usage for the fixture                                     |
| $HCIF_{e}$             | = Heating and Cooling Interactive Factor                                       |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours              |
| CF                     | = Coincidence Factor for Peak Demand hours                                     |

The high bay lighting hours stated by the site contact for a typical work week of 24-hour days with some weekend was verified by AMI billing data for a three-month period, charted in the figure below.



AMI Interval Billing Energy (kWh) by Day and Hour

The tables below for new construction lighting present the allowed wattage, prorated to each fixture for comparison, expected lighting hours of operation, and heating and cooling interactive factors associated with each of the areas. The allowed wattage for each area based on units of square feet or linear feet is referenced from the *ASHRAE 90.1 2007* standards for the hospital building type.

| Measure                | Quantity   | Wattage |           | Hours  | Heating<br>Cooling    | Ex Post Gross |  |
|------------------------|------------|---------|-----------|--------|-----------------------|---------------|--|
|                        | (Fixtures) | Allowed | Efficient | 1100/5 | Interaction<br>Factor | kWh Savings   |  |
| Manuf LED High bay     | 136        | 550     | 144       | 6,672  | 1.00                  | 368,068       |  |
| Manuf LED Strip        | 168        | 290     | 87.9      | 6,672  | 1.00                  | 226,733       |  |
| Manuf LED Strip        | 168        | 290     | 88        | 6,672  | 1.00                  | 226,621       |  |
| Office LED Panel       | 29         |         | 26.67     | 3,120  | 1.08                  |               |  |
| Office LED Panel       | 58         | 4.1     | 38        | 3,120  | 1.08                  | 702           |  |
| Office LED Strip       | 14         | 41      | 72        | 3,120  | 1.08                  | 723           |  |
| Office LED Wrap        | 20         |         | 40        | 3,120  | 1.08                  |               |  |
| Exterior Wall pack     | 4          | 313     | 108       | 4,300  | 1.00                  | 3,517         |  |
| Exterior Wall pack     | 4          | 313     | 108       | 4,300  | 1.00                  | 3,517         |  |
| Exterior Wall pack     | 6          | 333     | 108       | 4,300  | 1.00                  | 5,814         |  |
| Exterior Wall pack     | 6          | 333     | 108       | 4,300  | 1.00                  | 5,814         |  |
| Exterior LED Pole      | 7          | 5(0     | 244       | 4,300  | 1.00                  | 8,114         |  |
| Exterior LED Flood     | 5          | 569     | 646       | 4,300  | 1.00                  |               |  |
| Exterior LED Wall pack | 12         | 720     | 22        | 4,300  | 1.00                  | 36,017        |  |
| Total                  |            |         |           |        |                       | 884,938       |  |

#### Lighting Power Density Calculations

| Measure                   | Code Baseline |         | Installed        | 11     | Ex Ante<br>Annual | Ex Post Gross  | Gross<br>Begligertiger | Ex Post             |                     |
|---------------------------|---------------|---------|------------------|--------|-------------------|----------------|------------------------|---------------------|---------------------|
|                           | Standard      | Size    | Allowed<br>Watts | Watts  | Hours             | kWh<br>Savings | kWh Savings            | Realization<br>Rate | Gross kW<br>Savings |
| Manufacturing Lighting    | 1.2 w/sf      | 172,250 | 172,250          | 49,135 | 6,672             | 821,242        | 821,422                | 100%                | 80.02               |
| Office Lighting           | 1.0 w/sf      | 5,000   | 5,000            | 4,785  | 3,120             | 669            | 723                    | 100%                | 22.10               |
| Exterior Wall Lighting    | 20 w/ft       | 1,300   | 6,500            | 2,160  | 4,300             | 18,662         | 18,662                 | 108%                | 0.17                |
| Exterior Parking Lighting | 0.15 wsf      | 45,550  | 6,825            | 4,938  | 4,300             | 8,114          | 8,114                  | 100%                | 0.00                |
| Exterior Doors Lighting   | 432 w/lf      | 70,128  | 8,640            | 264    | 4,300             | 36,017         | 36,017                 | 100%                | 0.00                |
| Total                     |               |         | 188,215          | 61,282 |                   | 884,884        | 884,938                | 100%                | 80.19               |

## Custom Lighting Energy Savings Calculations

## Results

## Gross Energy Impacts Summary

|                           |         | Ex Post |                             |       |
|---------------------------|---------|---------|-----------------------------|-------|
| Measure Category          | Ex Ante | Ex Post | Ex Post Realization<br>Rate |       |
| New Construction Lighting | 884,884 | 884,938 | 100%                        | 80.19 |
| Total                     | 884,884 | 884,938 | 100%                        | 80.19 |

The ex post annual energy savings are 884,938 kWh and the ex post peak demand reduction is 80.19 kW. The energy gross realization rate is 100%. The verified inputs to the savings algorithm were the same between the ex ante and ex post, except for the ex post waste heat factor for the office area having a value of 1.08 versus 1.0.

There is some uncertainty in the operational installed wattage of the exterior LED fixtures with the adjustable light output. The site contact was not certain of the setting during installation, and unable to access the elevated fixtures for verification. There are a total of 32 exterior fixtures each with a selectable lighting output that corresponds from 18W to 108W each.

#### Project Number 119 and 217

#### **Executive Summary**

Under projects 119 and 217, a program participant received prescriptive and custom incentives from I&M for new construction lighting measures for a new manufacturing facility. The ex post annual energy savings are 86,866 kWh with ex post peak demand reduction of 17.05 kW. The project energy savings gross realization rate is 90%.

#### **Project Description**

The customer installed lighting during new construction that exceeded the code-based lighting power density allowances.

#### **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Allowed \ LPD - Installed \ LPD}{1000}\right) \times Footage \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Allowed \ LPD - Installed \ LPD}{1000}\right) \times Footage \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                                        |
|------------------------|--------------------------------------------------------------------------------|
| Allowed LPD            | = Allowed lighting power density per square foot per ASHRAE Standard 90.1-2007 |
| Installed LPD          | = Installed lighting power density per square foot                             |
| Footage                | = Square footage of new construction space                                     |
| HOU                    | = Indicates hours of usage for the fixture                                     |
| HCIF <sub>e</sub>      | = Heating and Cooling Interactive Factor                                       |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours              |
| CF                     | = Coincidence Factor for Peak Demand hours                                     |

The tables below present the code allowed wattage prorated to each fixture for comparison, the expected lighting hours of operation, and the heating and cooling interactive factors associated with each of the areas. The allowed wattage for each area based on units of square feet or linear feet is referenced from the *ASHRAE 90.1 2007* standards for the big box retail building.

| Measure           | Quantity   | Quantity Wattage |           | Hours | Heating<br>Cooling    | Ex Post<br>Gross kWh |
|-------------------|------------|------------------|-----------|-------|-----------------------|----------------------|
| Measure           | (Fixtures) | Allowed          | Efficient | nours | Interaction<br>Factor | Savings              |
| 37W LED Troffer   | 319        | 70               | 37        | 4,836 | 1.133                 | 58,171               |
| 64W LED 8' Strip  | 77         | 122              | 65        | 4,836 | 1.133                 | 24,268               |
| 32W LED 4' Strip  | 3          | 61               | 32        | 4,836 | 1.133                 | 473                  |
| 32W LED Wall Pack | 1          | 61               | 32        | 4,836 | 1.133                 | 156                  |
| Total             |            |                  |           |       |                       | 83,068               |

Lighting Power Density Calculations

Custom Lighting Energy Savings Calculations

| Мотина            | Code Baseline |         |                  | Installed | Installed Hours |                | Ex Post Gross | Gross               | Ex Post<br>Gross kW |
|-------------------|---------------|---------|------------------|-----------|-----------------|----------------|---------------|---------------------|---------------------|
| Measure           | Standard      | Size    | Allowed<br>watts | watts     | Hours           | kWh<br>Savings | kWh Savings   | Realization<br>Rate | Gross kw<br>Savings |
| Interior Lighting | 21,465        | 172,250 | 32,197           | 17,036    | 4,836           | 84,021         | 83,068        | 99%                 | 15.28               |
| Total             |               |         |                  |           | 84,021          | 83,068         | 99%           | 15.28               |                     |

As the HVAC units were electric cooling and gas heat, the savings were determined by the following equation:

$$kWh_{Savings} = \left(\frac{1}{SEER_{Base}} - \frac{1}{SEER_{EE}}\right) \times kBtuh \times EFLH_{cooling}$$

$$kW_{Peak} = \left(\frac{1}{EER_{Base}} - \frac{1}{EER_{EE}}\right) \times kBtuh \times CF$$

Where:

 $kWh_{savings}$  = Annual energy savings

*kBtuh* = *Net cooling capacity of the air conditioner* 

SEER<sub>Base</sub>= Seasonal Energy Efficiency Ratio of baseline unit

*IEER*<sub>EE</sub> = Seasonal Energy Efficiency Ratio of as-built unit

*EER*<sub>Base</sub> = Energy Efficiency Ratio of baseline unit

*EER<sub>EE</sub>* = *Energy Efficiency Ratio of as-built unit* 

*EFLH* = *Equivalent Full Load Hours of air conditioner operation, big box retail* 

*CF* = *Coincidence Factor for Peak Demand hours* 

| Measure                   | Building Type     | Baseline<br>IEER<br>/SEER | Total<br>Tons | Installed<br>IEER /<br>SEER | EFLH | CF   | Ex Ante<br>Annual kWh<br>Savings | Ex Post<br>Gross kWh<br>Savings | Gross<br>Realization<br>Rate |
|---------------------------|-------------------|---------------------------|---------------|-----------------------------|------|------|----------------------------------|---------------------------------|------------------------------|
| HVAC - Air<br>Conditioner | Big Box<br>Retail | 14.0                      | 10            | 17.1                        | 1056 | 0.74 | 8,070                            | 1,563                           | 19%                          |
| HVAC - Air<br>Conditioner | Big Box<br>Retail | 14.0                      | 3             | 18                          | 1056 | 0.74 | 2,859                            | 575                             | 20%                          |
| Total                     |                   |                           |               |                             |      |      | 10,929                           | 2,138                           | 20%                          |

# HVAC Energy Savings Calculations

#### Results

|                           |         | kWh Savings |                     |                     |  |  |  |
|---------------------------|---------|-------------|---------------------|---------------------|--|--|--|
| Measure Category          | Ex Ante | Ex Post     | Realization<br>Rate | Gross kW<br>Savings |  |  |  |
| HVAC                      | 10,929  | 2,138       | 20%                 | 1.57                |  |  |  |
| New Construction Lighting | 84,021  | 83,068      | 99%                 | 15.28               |  |  |  |
| LED Exit Signs            | 1,660   | 1,660       | 100%                | 0.20                |  |  |  |
| Total                     | 96,610  | 86,866      | 90%                 | 17.05               |  |  |  |

# Gross Energy Impacts Summary

The ex post annual energy savings are 86,866 kWh and the ex post peak demand reduction is 17.05 kW. The energy gross realization rate is 90%. The ex post savings analysis of the new HVAC only applied the cooling EFLH hours to the load and improved efficiency, as the installed units were not heat pumps but air conditioning with gas heat packaged units. The measure was listed as a heat pump instead of an air conditioner, which may be the source of the ex ante overestimation of the savings if heating effective full load hours were included in the analysis. The baseline efficiency is the Federal Appliance Guideline value of 14.0 for 3-phase unitary equipment less than 65,000 BTUh.

#### Project Number 118 and 216

#### **Executive Summary**

Under projects 118 and 216, a program participant received prescriptive and custom incentives from I&M for new construction lighting measures for a new manufacturing facility. The ex post annual energy savings are 1,365,105 kWh with ex post peak demand reduction of 143.65 kW. The project energy savings gross realization rate is 100%.

#### **Project Description**

The customer received custom incentives for installing (184) LED high bay fixtures and (6) LED wall pack fixtures, along with prescriptive incentives for attaching (184) fixture mounted occupancy sensors to the high bay lighting.

#### **Measurement and Verification Effort**

Through remote data collection, ADM staff verified the installation of the lighting equipment, the lighting hours of operation, the type of lighting control employed (switch, occupancy sensor, photocell, etc.), and the facility's HVAC type. The following equations were used to calculate the annual savings of the lighting measures:

$$kWh_{Savings} = \left(\frac{Allowed \ LPD - Installed \ LPD}{1000}\right) \times Footage \times HOU \times (HCIF_e)$$

$$kW_{Peak} = \left(\frac{Allowed \ LPD - Installed \ LPD}{1000}\right) \times Footage \times CF \times (HCIF_d)$$

Where:

| kWh <sub>savings</sub> | = Annual energy savings                                                        |
|------------------------|--------------------------------------------------------------------------------|
| Allowed LPD            | = Allowed lighting power density per square foot per ASHRAE Standard 90.1-2007 |
| Installed LPD          | = Installed lighting power density per square foot                             |
| Footage                | = Square footage of new construction space                                     |
| HOU                    | = Indicates hours of usage for the fixture                                     |
| $HCIF_{e}$             | = Heating and Cooling Interactive Factor                                       |
| $HCIF_d$               | = Heating and Cooling Interactive Factor during Peak Demand hours              |
| CF                     | = Coincidence Factor for Peak Demand hours                                     |

The tables below present code-allowed wattage, prorated to each fixture for comparison, expected lighting hours of operation, and heating and cooling interactive factors associated with each of the areas. The allow wattage for each area based on units of square feet or linear feet is referenced from the *ASHRAE 90.1 2007* standards for the hospital building type.

| Measure            | Quantity   |         | tage      | Hours | Heating<br>Cooling    | Ex Post Gross |
|--------------------|------------|---------|-----------|-------|-----------------------|---------------|
| measure            | (Fixtures) | Allowed | Efficient | mours | Interaction<br>Factor | kWh Savings   |
| LED High bay       | 62         | 879     | 105       | 7,488 | 1.00                  | 359,523       |
| LED High bay       | 2          | 879     | 105       | 7,488 | 1.00                  | 11,598        |
| LED High bay       | 2          | 866     | 103       | 7,488 | 1.00                  | 11,421        |
| LED High bay       | 64         | 1206    | 144       | 7,488 | 1.00                  | 508,965       |
| LED High bay       | 34         | 1206    | 144       | 7,488 | 1.00                  | 270,388       |
| LED High bay       | 15         | 1206    | 144       | 7,488 | 1.00                  | 119,289       |
| LED High bay       | 3          | 1206    | 144       | 7,488 | 1.00                  | 23,858        |
| LED High bay       | 2          | 298     | 35        | 7,488 | 1.00                  | 3,927         |
| Exterior Wall pack | 4          | 430     | 266       | 4,300 | 1.00                  | 2,821         |
| Exterior Wall pack | 2          | 215     | 133       | 4,300 | 1.00                  | 705           |
| Total              |            |         |           |       |                       | 1,312,492     |

Lighting Power Density Calculations

#### Custom Lighting Energy Savings Calculations

|                        | Code Baseline |         |                  | Installed | Installed Hours |                | Ex Post Gross | Gross<br>Realization | Ex Post             |  |
|------------------------|---------------|---------|------------------|-----------|-----------------|----------------|---------------|----------------------|---------------------|--|
| Measure                | Standard      | Size    | Allowed<br>Watts | Watts     | Hours           | kWh<br>Savings | kWh Savings   | Realization<br>Rate  | Gross kW<br>Savings |  |
| LPD Lighting           | 0.8 w/sf      | 248,138 | 198,510          | 23,702    | 7,488           | 1,308,966      | 1,308,966     | 100%                 | 138.10              |  |
| Exterior Wall Lighting | 5 w/sf        | 430     | 2,150            | 1,330     | 4,300           | 3526           | 3,526         | 100%                 | 0.00                |  |
| Total                  |               |         | 200,660          | 25,032    |                 | 1,312,492      | 1,312,492     | 100%                 | 138.10              |  |

The savings for the fixture mounted occupancy sensors were estimated with the *IN TRM* based energy savings factor of 30%, summarized in the following table.

| Prescriptive Lighting | <i>Controls</i> Savings |
|-----------------------|-------------------------|
|-----------------------|-------------------------|

| Measure                   | Occupancy<br>Sensors | Watts | Hours | Heating<br>Cooling<br>Interaction<br>Factor | Ex Ante<br>Annual kWh<br>Savings | Ex Post Gross<br>kWh Savings | Gross<br>Realization<br>Rate |
|---------------------------|----------------------|-------|-------|---------------------------------------------|----------------------------------|------------------------------|------------------------------|
| Fixture Occupancy Sensors | 62                   | 105   | 7,488 | 1                                           | 18,910                           | 14,624                       | 77%                          |
| Fixture Occupancy Sensors | 2                    | 103   | 7,488 | 1                                           | 610                              | 465                          | 76%                          |
| Fixture Occupancy Sensors | 64                   | 144   | 7,488 | 1                                           | 19,520                           | 20,703                       | 106%                         |
| Fixture Occupancy Sensors | 34                   | 144   | 7,488 | 1                                           | 10,370                           | 10,998                       | 106%                         |
| Fixture Occupancy Sensors | 15                   | 144   | 7,488 | 1                                           | 4,575                            | 4,852                        | 106%                         |
| Fixture Occupancy Sensors | 3                    | 144   | 7,488 | 1                                           | 915                              | 970                          | 106%                         |
| Total                     |                      |       |       |                                             | 54,900                           | 52,612                       | 96%                          |

#### Results

|                                  | - 0/ T    |             | <i>.</i>            |                     |  |  |  |
|----------------------------------|-----------|-------------|---------------------|---------------------|--|--|--|
|                                  |           | kWh Savings |                     |                     |  |  |  |
| Measure Category                 | Ex Ante   | Ex Post     | Realization<br>Rate | Gross kW<br>Savings |  |  |  |
| Custom New Construction Lighting | 1,312,492 | 1,312,492   | 100%                | 138.10              |  |  |  |
| Prescriptive Lighting Controls   | 54,900    | 52,612      | 96%                 | 5.55                |  |  |  |
| Total                            | 1,367,392 | 1,365,105   | 100%                | 143.65              |  |  |  |

Gross Energy Impacts Summary

The ex post annual energy savings are 1,366,105 kWh and the ex post peak demand reduction is 143.65 kW. The energy gross realization rate is 100%. The ex ante and ex post applied the same *ASHRAE 90.1 2007* based allowed lighting power densities by usage area, along with the installed equipment wattage and hours of use. The hours of use, based on the schedule provided by the site contact, were working 6 days, 24 hours per day, except for two months in the early Fall when 7 days are worked per week.

# 3. C&I Participant Survey Instrument

# SCREENING / BACKGROUND [DO NOT DISPLAY IN SURVEY]

1. Our records indicate that you are the main contact for the [FR\_MEAS1] project completed at [FR\_LOC1].

Were you involved in the decision to complete this project?

- 1. Yes
- 2. No
- 2. Does your company have any of the following policies or procedures in place at [FR\_LOC1]?

[FOR EACH, 1 =Yes, 2 =No, 98 =Don't know]

- a. A person or persons responsible for monitoring or managing energy usage
- b. Defined energy savings goals
- c. A specific policy requiring that energy efficiency be considered when purchasing equipment
- d. Carbon reduction goals

# PROGRAM AWARENESS [DO NOT DISPLAY IN SURVEY]

- 3. How did you FIRST learn about Indiana Michigan Power's incentives for efficient equipment upgrades? [RANDOMIZE 1 10, FIX 11 and 98]
  - 1. From a Trade Ally/contractor/equipment vendor/ energy consultant
  - 2. From an Indiana Michigan Power Account Representative
  - 3. From a program representative / Lockheed Martin
  - 4. From a search engine (Google, Yahoo, Bing)
  - 5. At an event/trade show
  - 6. Received an email blast or electronic newsletter
  - 7. Received an informational brochure
  - 8. From a program sponsored webinar
  - 9. From Indiana Michigan's website
  - 10. Friends or colleagues
  - 11. Some other way (please explain) [OPEN]
  - 98. Don't know

# PROGRAM DELIVERY EFFICIENCY [DO NOT DISPLAY IN SURVEY]

4. Which of the following people worked on completing your application for program incentives (including gathering required documentation)?

# [MULTI SELECT]

- 1. Yourself
- 2. Another member of your company
- 3. A contractor
- 4. An equipment vendor
- 5. A designer or architect

#### [DISPLAY Q5 IF Q4 = 1]

5. Using a 5-point scale, where 1 means "completely unacceptable" and 5 means "completely acceptable," how would you rate . . .

# [SCALE: 1 = 1 (Completely unacceptable), 2 = 2, 3 = 3, 4 = 4, 5 = 5 (Completely acceptable agree), 98 = Don't know, 99 = Not applicable]

- a. the ease of finding the application on Indiana Michigan Power's website
- b. the ease of using the application portal on Indiana Michigan Power's website
- c. the time it took to approve the application
- d. the clarity of information on how to complete the application
- e. the effort required to provide required invoices or other supporting documentation
- f. the overall application process

# [DISPLAY Q6 IF Q5a-f < 3]

6. How could the application process be improved?

[TEXT BOX]

# [DISPLAY Q7 IF Q4 = 1]

- 7. Did you have a clear sense of whom you could go to for assistance with the application process?
  - 1. Yes
  - 2. No
  - 98. Don't know
- 8. Who installed your program-qualified equipment or efficiency upgrades? Was it...
  - 1. Your own staff
  - 2. A contractor you've worked with before
  - 3. A contractor recommended by the Indiana Michigan program (registered trade ally)
  - 4. A new contractor that someone else recommended
  - 5. Someone else (Please specify)
  - 98. Don't know
- 9. How did the incentive amount compare to what you expected? Would you say...

- 1. It was much less
- 2. It was somewhat less
- 3. It was about the amount expected
- 4. It was somewhat more
- 5. It was much more
- 98. Don't know

#### DECISION MAKING AND EQUIPMENT SELECTION [DO NOT DISPLAY]

10. Has your organization purchased any significant energy efficient equipment in the last three years without applying for a financial incentive through an energy efficiency program at the [FR\_LOC1] location?

1. Yes. Our organization purchased energy efficient equipment but did not apply for incentive.

2. No. Our organization purchased significant energy efficient equipment and applied for an incentive.

- 3. No significant energy efficient equipment was purchased by our organization.
- 98. Don't know

[DISPLAY Q11 IF Q10 = 1 OR 2]

- 11. Which of the following financial methods, if any, does your organization typically use to evaluate energy efficiency improvements? [MULTISELECT]
  - 1. Initial Cost
  - 2. Simple payback
  - 3. Internal rate of return
  - 4. Life cycle cost
  - 5. We don't use any of these
  - 98. Don't know

[DISPLAY Q12 IF Q11=2]

12. What payback period do you typically require to approve an efficiency project?

[OPEN]

[DISPLAY Q13 IF Q11=3]

13. What internal rate of return do you typically use to approve an efficiency project?

[OPEN]

- 14. Before participating in the [PROGRAM\_NAME] Program, had you implemented any equipment or measure similar to the [FR\_MEAS1] [INSTALLED\_FR1] at the [FR\_LOC1] location?
  - 1. Yes
  - 2. No
  - 98. Don't know

- 15. When did you first learn about I&M's energy efficiency programs? Was it BEFORE or AFTER you finalized the specifications of your [FR\_MEAS1] project, including the efficiency level and the scope of the project?
  - 1. Before
  - 2. After
  - 98. Don't know
- 16. Did you have plans to [INSTALL\_FR1] the [FR\_MEAS1] at the [FR\_LOC1] location before participating in the program?
  - 1. Yes
  - 2. No
  - 98. Don't know

#### [DISPLAY Q17 IF Q16 = 1]

- 17. Prior to hearing about the program incentive, was the purchase of the [FR\_MEAS1] included in your organization's capital budget?
  - 1. Yes
  - 2. No
  - 98. Don't know / Not applicable

#### [DISPLAY Q18 IF Q16 = 1]

- 18. Had your organization ALREADY ordered or purchased the [FR\_MEAS1] BEFORE you heard about the program?
  - 1. Yes
  - 2. No
  - 98. Don't know
- 19. Did the incentive help the [FR\_MEAS1] project receive implementation approval from your organization?
  - 1. Yes
  - 2. No
  - 98. Don't know / Not applicable
- 20. Would you have completed the [FR\_MEAS1] project even if you had not participated in the program?
  - 1. Yes
  - 2. No
  - 98. Don't know

- 21. Did you have experience with I&M's incentive program before completing the [FR\_MEAS1] project?
  - 1. Yes
  - 2. No
  - 98. Don't know

[DISPLAY Q22 IF Q21 = 1]

- 22. How important was your previous experience with Indiana-Michigan-offered programs in making your decision to [INSTALL\_FR1] the [FR\_MEAS1] at the [FR\_LOC1] location?
  - 1. Very important
  - 2. Somewhat important
  - 3. Only slightly important
  - 4. Not at all important
  - 98. Don't know
- 23. Did a [PROGRAM\_NAME] Program representative or other I&M representative recommend that you [INSTALL\_FR1] the [FR\_MEAS1] at the [FR\_LOC1] location?
  - 1. Yes
  - 2. No
  - 98. Don't know

[DISPLAY Q24 IF Q23 = 1]

- 24. If the [PROGRAM\_NAME] program representative had not recommended [INSTALLING\_FR1] the [FR\_MEAS1], how likely is it that you would have [INSTALLED\_FR1] it anyway?
  - 1. Definitely would have
  - 2. Probably would have
  - 3. Probably would not have
  - 4. Definitely would not have
  - 98. Don't know
- 25. If the [PROGRAM\_NAME] program contractor that provided the energy assessment of your facility had not recommended [INSTALLING\_FR1] the [FR\_MEAS1], how likely is it that you would have [INSTALLED\_FR1] it anyway?
  - 1. Definitely would have
  - 2. Probably would have
  - 3. Probably would not have
  - 4. Definitely would not have
  - 98. Don't know
  - 26. Would your organization have been financially able to [INSTALL\_FR1] the [FR\_MEAS1] at the [FR\_LOC1] without the financial incentive from the program?
    - 1. Yes

- 2. No
- 98. Don't know

#### [DISPLAY Q27 IF Q26 = 2]

- 27. To confirm, your organization would NOT have allocated the funds to complete a similar energy saving project if the program incentive was not available. Is that correct?
  - 1. Yes
  - 2. No
  - 98. Don't know
- 28. If the financial incentive from the [PROGRAM\_NAME] Program had not been available, how likely is it that you would have [INSTALLED\_FR1] the [FR\_MEAS1] at the [FR\_LOC1] location anyway?
  - 1. Definitely would have [INSTALLED\_FR1]
  - 2. Probably would have [INSTALLED\_FR1]
  - 3. Probably would not have [INSTALLED\_FR1]
  - 4. Definitely would not have [INSTALLED\_FR1]
  - 98. Don't know

[DISPLAY Q29 IF Q26 = 2 AND Q27 = 1 AND Q16 = 1AND Q17 = 1]

29. Previously you said that your organization had plans to complete the project and would have completed it if you had not participated in the program. You also said that your organization would not have been financially able to install the equipment without the program incentive.

In your own words, can you explain the role that the financial incentive played in your decision to complete this project?

#### [DISPLAY Q30 IF MEASURE\_QUANT > 1]

30. We would like to know whether the availability of information and the financial incentive provided through the [PROGRAM\_NAME] program affected the quantity (or number of units) of [FR\_MEAS1] that you purchased and [INSTALLED\_FR1] at the [FR\_LOC1].

Did you purchase and install more [FR\_MEAS1] than you otherwise would have without the program?

- 1. Yes
- 2. No, program did not affect quantity purchased and installed.
- 98. Don't know

# [DISPLAY Q31 IF ENERGY\_EQUIP = YES]

31. We would like to know whether the availability of information and financial incentive provided through the [PROGRAM\_NAME] program affected the level of energy efficiency you chose for the [FR\_MEAS1B] at the [FR\_LOC1] location.

Did you choose equipment that was more energy efficient than you would have chosen because of the program?

- 1. Yes
- 2. No, program did not affect level of efficiency chosen for equipment.
- 98. Don't know

#### [DISPLAY Q32 IF Q31 = 1]

- 32. What kind of equipment, if any, would you have installed if the program was not available?
  - 1. [OPEN]
  - 98. Don't know
- 33. We would like to know whether the availability of information and the financial incentive provided through the program affected the timing of the [FR\_MEAS1] project at the [FR\_LOC1] location.

Did you [INSTALL\_FR1] the [FR\_MEAS1] earlier than you otherwise would have without the program?

- 1. Yes
- 2. No, program did not affect timing of project.
- 98. Don't know

#### [DISPLAY Q34 IF Q33 = 1]

- 34. When would you otherwise have completed the project?
  - 1. Less than 6 months later
  - 2. 6-12 months later
  - 3. 1-2 years later
  - 4. 3-5 years later
  - 5. More than 5 years later
  - 98. Don't know

# [DISPLAY Q35 IF MULTIPLE\_MEASURE =1]

- 35. Our records indicate you [INSTALLED\_FR2] [FR\_MEAS2] at the [FR\_LOC2] location in addition to [FR\_MEAS1] at the [FR\_LOC1] location. Did both of these projects go through the same decision making process or was a separate decision made for each?
  - 1. The same decision making process applies to both projects.
  - 2. A different decision making process applies to each project.
  - 3. We did not [INSTALL\_FR2] [FR\_MEAS2] at the [FR\_LOC2] location.
  - 98. Don't know

# [IF Q35 = 2, REPEAT Q14 THROUGH Q34 WITH FR\_MEAS2]

# MEASUREMENT AND VERIFICATION [DO NOT DISPLAY]

#### [DISPLAY Q36 IF INCENTIVE = 1]

- 36. After your project was completed, did a program representative inspect the work done through the program?
  - 1. Yes
  - 2. No
  - 98. Don't know

[DISPLAY Q37 IF Q36=1]

37. Using the following scale, please rate your agreement with the following statements:

# [SCALE: 1 = 1 (Strongly disagree), 2 = 2, 3 = 3, 4 = 4, 5 = 5 (Strongly agree), 98 = Don't know]

- a. The inspector was courteous
- b. The inspector was efficient

# SPILLOVER [DO NOT DISPLAY]

[NOTE: THESE QUESTIONS SERVE TO COLLECT DATA TO QUANTIFY SPILLOVER EFFECTS FROM the INCENTIVE PROGRAMS AND DIRECT IMPACTS OF THE ENERGY ASSESSMENT TOOL]

- 38. Since you completed the incentive project, have you installed any energy efficient equipment at a facility that receives electrical service from I&M and that you DID NOT get a rebate or discount for from I&M?
  - 1. Yes
  - 2. No
  - 98. Don't know

# [DISPLAY Q39 if Q38 = 1]

39. What additional energy efficient equipment have you installed? [MULTI SELECT]

- 1. Lighting
- 2. Lighting controls or occupancy sensors
- 3. Unitary or split air conditioning system or chiller
- 4. ENERGY STAR Room air conditioners
- 5. Efficient motors
- 6. Refrigeration equipment (including LED case lighting)
- 7. Kitchen equipment
- 8. Something else [OPEN ENDED]
- 96. Didn't implement any measures [SKIP TO CUSTOMER SATISFACTION]
- 98. Don't know

[DISPLAY Q40 IF Q38=1]

# 40. Why didn't you receive incentives for those items? [MULTI SELECT RANDOMIZE ORDER, BUT FIX OTHER AND DON'T KNOW]

- 1. Didn't know whether equipment qualified for financial incentives
- 2. Equipment did not qualify for financial incentives
- 3. Too much paperwork for the financial incentive application
- 4. Financial incentive was insufficient
- 5. Didn't have time to complete paperwork for financial incentive application
- 6. Didn't know about financial incentives until after equipment was purchased
- 7. We did receive an incentive [SKIP TO FIRMOGRAPHICS]
- 8. Other (Please specify) [OPEN ENDED]
- 98. Don't know

#### [DISPLAY Q41 IF Q38=1]

- 41. Did you work with a contractor to install that efficient equipment or did your company's staff install the equipment?
  - 1. Worked with a contractor
  - 2. Company self-installed the equipment
  - 3. Both
  - 98. Don't know

#### LIGHTING [DO NOT DISPLAY]

#### [DISPLAY Q42 IF Q38 = 1]

#### 42. What type of lighting did you install? [MULTI-SELECT]

- 1. T8 Fluorescent linear lamps Single (1) lamps
- 2. T8 Fluorescent linear lamps 2 lamp fixtures
- 3. T8 Fluorescent linear lamps 4 lamp fixtures
- 4. T8 Fluorescent linear lamps 6 lamp fixtures
- 5. T5 Fluorescent linear lamps Single (1) lamps
- 6. T5 Fluorescent linear lamps 2 lamp fixtures
- 7. T5 Fluorescent linear lamps 4 lamp fixtures
- 8. T5 Fluorescent linear lamps 6 lamp fixtures
- 9. LED Screw-in BAR/R/ER bulbs
- 10. LED Screw-in Interior PAR/MR bulbs
- 11. LED Screw-in omnidirectional A-line bulbs
- 12. LED 2-foot linear replacement lamps
- 13. LED 4-foot linear replacement lamps
- 14. LED exterior flood or spot luminaires
- 15. LED 1x4 panel or troffer
- 16. LED 2x2 panel or troffer
- 17. LED 2x4 panel or troffer
- 18. LED high-bay lighting
- 19. Another type
- 98. Don't know

#### [DISPLAY Q43 IF Q42 = 19]

43. What other type of lighting equipment did you install?

[TEXT BOX] Lamps/Bulbs

#### **SPILLOVER**

#### [REPEAT Q44 - Q47 FOR EACH TYPE SELECTED IN Q42]

44. How many [Q42 RESPONSE] did you install?

#### [TEXT BOX] Watts

45. What was the average wattage of the [Q42 RESPONSE]?

# [TEXT BOX]

- 46. Were the [Q42 RESPONSE] installed inside or outside?
  - 1. Inside
  - 2. Outside
  - 3. Parking garage
  - 98. Don't know

#### [DISPLAY Q47 IF Q46 = 1]

47. What type of building did you install the [Q42 RESPONSE] in?

- 1. Food Sales
- 2. Food Service
- 3. Health Care
- 4. Hotel/Motel
- 5. Office
- 6. Public Assembly
- 7. Public Services (non-food)
- 8. Retail
- 9. Warehouse
- 10. School
- 11. College
- 12. Industrial 1 Shift
- 13. Industrial 2 Shift
- 14. Industrial 3 Shift
- 15. Other (Please describe)
- 98. Don't know

#### [DISPLAY Q48 IF Q46 = 1]

- 48. Is the inside space heated, cooled, or both?
  - 1. Heated
  - 2. Cooled

- 3. Both
- 98. Don't know

49. What type of lighting did the [Q42 RESPONSE] replace?

- 1. T12s (linear fluorescents)
- 2. T8s (linear fluorescents)
- 3. Metal-halide / High-intensity discharge
- 4. Incandescent
- 5. Compact fluorescent (CFL)
- 5. Something else [OPEN]
- 98. Don't know
- 50. What was the average wattage of the old lamps or bulbs?
- 51. How many of the old lamps or bulbs did you remove?

#### [DISPLAY Q52 IF Q39 =1]

52. How important was your experience with the program in your decision to install this lighting equipment?

#### [SCALE 0 "Not at all important" - 10 "Very important"] 98. Don't know

#### [DISPLAY Q53 IF Q39 =1]

53. If you had NOT participated in the program, how likely is it that your organization would still have installed this lighting equipment?

# [SCALE 0 "Definitely would not have installed" - 10 "Definitely would have installed"]98. Don't know

[DISPLAY Q54 IF [Q52=0,1,2,3 AND Q53=0,1,2,3]

OR IF [Q52=8,9,10 AND Q53=8,9,10]

54. You scored the importance of your program experience to your decision to implement additional lighting measures with [Q52 RESPONSE ] out of 10 possible points. You ALSO scored the likelihood of implementing additional lighting measures if your organization had not participated in the program with [Q53 RESPONSE] out of 10 possible points.

Can you please explain the role the program made in your decision to implement this measure?

LIGHTING CONTROLS [DO NOT DISPLAY]

[DISPLAY Q55 IF Q39 = 2]

55. How many fixtures are being controlled by the lighting controls?

#### [TEXT BOX]

[DISPLAY Q56 IF Q39 = 2]

56. On average, how many lamps or bulbs does each fixture contain?

#### [TEXT BOX]

[DISPLAY Q57 IF Q39 = 2]

57. What is the average wattage of these lamps?

# [TEXT BOX]

[DISPLAY Q58 IF Q39 = 2]

58. Are any of the lighting controls that you installed central time clock controls?

- 1. Yes
- 2. No
- 98. Don't know

#### [DISPLAY Q59 IF Q58 = 1]

59. How many of the fixtures are controlled by the central time clock?

#### [TEXT BOX]

#### [DISPLAY Q60 IF Q39 = 2]

60. What type of building did you install the lighting controls in?

- 1. Food Sales
- 2. Food Service
- 3. Health Care
- 4. Hotel/Motel
- 5. Office
- 6. Public Assembly
- 7. Public Services (non-food)
- 8. Retail
- 9. Warehouse
- 10. School
- 11. College
- 12. Industrial 1 Shift
- 13. Industrial 2 Shift
- 14. Industrial 3 Shift
- 16. Other (Please specify)
- 98. Don't know

#### [DISPLAY Q61 IF Q39 = 2]

61. How important was your experience with the program in your decision to install lighting controls?

#### [SCALE 0 "Not at all important" - 10 "Very important"] 98. Don't know

[DISPLAY Q62 IF Q39 = 2]

62. If you had NOT participated in the program, how likely is it that your organization would still have installed lighting controls?

[SCALE 0 "Definitely would not have installed" - 10 "Definitely would have installed"98. Don't know

[DISPLAY Q63 IF [Q61=0,1,2,3 AND Q62=0,1,2,3]

OR [Q61=8,9,10 AND Q62=8,9,10]]

63. You scored the importance of your program experience to your decision to implement lighting controls with [ Q61 RESPONSE ] out of 10 possible points. You ALSO scored the likelihood of implementing lighting controls if your organization had not participated in the program with [ Q62 RESPONSE] out of 10 possible points. Can you please explain the role the program made in your decision to implement this measure?

# [TEXT BOX]

#### HVAC MEASURES [DO NOT DISPLAY]

[DISPLAY Q64 IF Q39 = 3]

- 64. What types of energy efficient equipment did you install as part of the HVAC project? [MULTI SELECT]
  - 1. Split air conditioning system (An A/C system that has an evaporator indoors and the compressor and condenser outdoors.)
  - 2. Packaged air conditioning system (A type of central air conditioning that contains both the air handler fan, compressor and condenser in a single unit. These are typically mounted on the roof.)
  - 3. Heat pump (An electric heating and cooling system)
  - 4. Air cooled chiller (A system that produces cold liquid sent around to individual spaces used for cooling air usually found in larger facilities)
  - 5. Water cooled chiller (A system that produces cold liquid sent around to individual spaces used for cooling air usually found in larger facilities)
  - 6. Another type
  - 98. Don't know

#### [DISPLAY Q65 IF Q64 = 6]

65. What other type of HVAC equipment did you install?

#### [TEXT BOX]

[REPEAT Q66 – Q68 FOR EACH SELECTED IN Q64]

66. We would like to know more about the rated efficiency and number of units of the [Q64 RESPONSE](s) that you installed.

For each level of efficiency of the equipment you installed, please provide the rated efficiency and the number of units.

- 67. What type of building did you install the heating/cooling equipment in?
  - 1. Grocery
  - 2. High School
  - 3. Hospital
  - 4. Light Industrial
  - 5. Office Large
  - 6. Office Small
  - 7. Primary School
  - 8. Religious Worship
  - 9. Restaurant Fast Food
  - 10. Restaurant Full Service
  - 11. Retail Big Box
  - 12. Retail Large
  - 13. Retail Small
  - 14. University
  - 15. Warehouse
  - 16. Other (Please specify)
  - 98. Don't know

68. What city is the building where you installed the heating/cooling equipment located in?

# [TEXT BOX]

[DISPLAY Q69 IF Q64 = 1-7]

69. How important was your experience with the program in your decision to install the energy efficient HVAC equipment?

#### [SCALE 0 "Not at all important" - 10 "Very important"] 98. Don't know

#### [DISPLAY Q70 IF Q64 = 1-7]

70. If you had NOT participated in the program, how likely is it that your organization would still have installed the energy efficient HVAC equipment?

# [SCALE 0 "Definitely would not have installed" - 10 "Definitely would have installed"98. Don't know

[DISPLAY Q71 IF [Q69=0,1,2,3 AND Q70=0,1,2,3] OR [Q69=8,9,10 AND Q70=8,9,10]]

71. You scored the importance of your program experience to your decision to implement energy efficient HVAC equipment with [Q69 RESPONSE ] out of 10 possible points. You ALSO scored the likelihood of implementing the energy efficient HVAC equipment if your organization had not participated in the program with [Q70 RESPONSE] out of 10 possible points. Can you please explain the role the program made in your decision to implement this measure?

# [TEXT BOX]

#### [DISPLAY Q72 IF Q39 = 4]

72. How many ENERGY STAR room air conditioners did you install?

#### [TEXT BOX]

#### [DISPLAY Q73 IF Q39 = 4]

73. What type of building did you install the heating/cooling equipment in?

- 1. Grocery
- 2. High School
- 3. Hospital
- 4. Light Industrial
- 5. Office Large
- 6. Office Small
- 7. Primary School
- 8. Religious Worship
- 9. Restaurant Fast Food
- 10. Restaurant Full Service
- 11. Retail Big Box
- 12. Retail Large
- 13. Retail Small
- 14. University
- 15. Warehouse
- 16. Other
- 98. Don't know

[DISPLAY Q74 IF Q39 = 4]

74. What city is the building where you installed the room air conditioners located in?

[TEXT BOX]

[DISPLAY Q75 IF Q39 = 4]

75. How important was your experience with the program in your decision to install the heating/cooling equipment?

# [SCALE 0 "Not at all important" - 10 "Very important"] 98. Don't know

[DISPLAY Q76 IF Q39 = 4]

76. If you had NOT participated in the program, how likely is it that your organization would still have installed the heating/cooling equipment?

# [SCALE 0 "Definitely would not have installed" - 10 "Definitely would have installed"98. Don't know

[DISPLAY Q77 IF [Q75=0,1,2,3 AND Q76=0,1,2,3] OR [Q75=8,9,10 AND Q76=8,9,10]]

77. You scored the importance of your program experience to your decision to install the energy efficient air conditioners with [Q75 RESPONSE ] out of 10 possible points. You ALSO scored the likelihood of installing the energy efficient air conditioners if your organization had not participated in the program with [Q76 RESPONSE] out of 10 possible points. Can you please explain the role the program made in your decision to implement this measure?

# [TEXT BOX]

EFFICIENT MOTORS [DO NOT DISPLAY]

[DISPLAY Q78 IF Q39 = 5]

78. How many efficient motors did you install?

[TEXT BOX]

[DISPLAY Q79 IF Q39 = 5]

79. What is the approximate average horsepower of the new motors? That is, what is the average across all of the motors you installed without an incentive?

# [TEXT BOX]

[DISPLAY Q80 IF Q39 = 5]

80. What is the approximate average efficiency of the new motors? That is, what is the average efficiency across all of the new motors?

[TEXT BOX] Rated efficiency (%)

#### [DISPLAY Q81 IF Q39 = 5]

81. On average, how many hours per day do the motors operate? That is, what the average number of hours the motors you installed operate?

[TEXT BOX] hours per day

[DISPLAY Q82 IF Q39 = 5]

82. How important was your experience with the program in your decision to install efficient motors?

#### [SCALE 0 "Not at all important" - 10 "Very important"] 98. Don't know

[DISPLAY Q83 IF Q39 = 5]

83. If you had NOT participated in the program, how likely is it that your organization would still have installed the efficient motors?

# [SCALE 0 "Definitely would not have installed" - 10 "Definitely would have installed"

98. Don't know

[DISPLAY Q84 IF [Q82=0,1,2,3 AND Q83=0,1,2,3] OR [Q82=8,9,10 AND Q83=8,9,10]]

84. You scored the importance of your program experience to your decision to implement efficient motors with [Q82 RESPONSE ] out of 10 possible points. You ALSO scored the likelihood of implementing the efficient motors if your organization had not participated in the program with [Q83 RESPONSE] out of 10 possible points. Can you please explain the role the program made in your decision to implement this measure?

# [TEXT BOX]

COMMERCIAL REFRIGERATION EQUIPMENT [DO NOT DISPLAY]

[DISPLAY Q85 IF Q39 = 6]

85. What types of energy efficient refrigeration equipment did you install?

- 1. ENERGY STAR Commercial freezer
- 2. ENERGY STAR Commercial refrigerator
- 3. Anti-sweat heater controls
- 4. LED refrigerated case lighting
- 5. Refrigerated case covers
- 6. Some other type of refrigeration equipment
- 98. Don't know

#### [DISPLAY Q86 IF Q85 = 6]

86. What other type of energy efficient refrigeration equipment did you install?

#### [TEXT BOX]

[DISPLAY Q87 IF Q85 = 1]

87. How many ENERGY STAR commercial freezers did you install?

[TEXT BOX]

[DISPLAY Q88 IF Q87 = 1, REPEAT FOR EACH UP TO THREE TIMES]

88. What is the volume in cubic feet of the first freezer?

#### [TEXT BOX]

[DISPLAY Q89 IF Q87 = 1, REPEAT FOR EACH UP TO THREE TIMES]

89. Does this freezer have a solid door or a glass door?

Solid door
 Glass door
 Don't know

[DISPLAY Q90 IF Q87 = 1, REPEAT FOR EACH UP TO THREE TIMES]

90. Is this a vertical freezer or a chest type freezer?

Vertical
 Chest
 Don't know

[DISPLAY Q91 IF Q85 = 2]

91. How many ENERGY STAR commercial refrigerators did you install?

[TEXT BOX] refrigerators

[DISPLAY Q92 IF Q91 = 2, REPEAT FOR EACH UP TO THREE TIMES]

92. What is the volume in cubic feet of the first refrigerator?

[TEXT BOX] cubic feet

[DISPLAY Q93 IF Q91 = 2, REPEAT FOR EACH UP TO THREE TIMES]

93. Does this refrigerator have a solid door or a glass door?

Solid door
 Glass door
 Don't know

[DISPLAY Q94 IF Q91 = 2, REPEAT FOR EACH UP TO THREE TIMES]

94. Is this a vertical refrigerator or a chest type refrigerator?

Vertical
 Chest

98. Don't know

[DISPLAY Q95 IF Q85 = 3]

95. Did you install humidity-based controls or conductivity-based controls, or both types?

- 1. Humidity-based controls
- 2. Conductivity-based controls
- 3. Both types
- 98. Don't know

[DISPLAY Q96 IF Q95=1 OR 3]

96. How many humidity-based controls did you install?

# [TEXT BOX]

[DISPLAY Q97 IF Q95= 1 OR 3]

97. What is the total number of freezer or refrigerator doors controlled by the humidity-based controls?

# [TEXT BOX]

[DISPLAY Q98 IF Q95= 2 OR 3]

98. How many conductivity-based controls did you install?

# [TEXT BOX]

[DISPLAY Q99 IF Q95= 2 OR 3]

99. What is the total number of freezer or refrigerator doors controlled by the conductivity-based controls?

# [TEXT BOX]

[DISPLAY Q100 IF Q95 = 98]

100. How many anti-sweat heater controls did you install?

# [TEXT BOX]

[DISPLAY Q101 IF Q95 = 98]

101. What is the total number of freezer or refrigerator doors controlled by the anti-sweat heater controls?

# [TEXT BOX]

[DISPLAY Q102 IF Q85 = 4]

102. How many linear feet in total of LED case lighting did you install?

# [TEXT BOX]

#### [DISPLAY Q103 IF Q85 = 5]

103. How many linear feet of refrigerated case covers did you install?

#### [TEXT BOX]

#### [DISPLAY Q104 IF Q39=6]

104. How important was your experience with the program in your decision to install the energy efficient refrigeration equipment?

# [SCALE 0 "Not at all important" - 10 "Very important"] 98. Don't know

[DISPLAY Q105 IF Q39=6]

105. If you had NOT participated in the program, how likely is it that your organization would still have installed this energy efficient refrigeration equipment?

# [SCALE 0 "Definitely would not have installed" - 10 "Definitely would have installed"98. Don't know

- [DISPLAY Q106 IF [Q104=0,1,2,3 AND Q105=0,1,2,3] AND [Q104=8,9,10 AND Q105=8,9,10]]
- 106. You scored the importance of your program experience to your decision to implement energy efficient refrigeration equipment with [Q104 RESPONSE ] out of 10 possible points. You ALSO scored the likelihood of implementing energy efficient refrigeration equipment if your organization had not participated in the program with [Q105 RESPONSE] out of 10 possible points. Can you please explain the role the program made in your decision to implement this measure?

# [TEXT BOX]

# COMMERCIAL KITCHEN EQUIPMENT [DO NOT DISPLAY]

[DISPLAY Q107 IF Q39 = 7]

- 107. What type of kitchen equipment did you install?
  - 1. Low flow pre-rinse spray valves
  - 2. ENERGY STAR Commercial fryers
  - 3. ENERGY STAR Commercial steam cookers
  - 4. ENERGY STAR hot food holding cabinets
  - 5. ENERGY STAR commercial griddles
  - 6. ENERGY STAR commercial convection ovens
  - 7. ENERGY STAR commercial combination ovens
  - 8. Some other type of kitchen equipment
  - 98. Don't know

[DISPLAY Q108 IF Q107 = 8]

108. What other type of kitchen equipment did you install?

#### [TEXT BOX]

```
[DISPLAY Q109 IF Q107 = 1]
```

- 109. Is the flow rate for any of the spray valves you installed equal to or less than 1.6 gallons per minute?
  - 1. Yes 2. No 98. Don't know

#### [DISPLAY Q110 IF Q107 = 1]

110. How many pre-rinse spray valves with a flow rate equal to or less than 1.6 gallons per minute did you install?

#### [TEXT BOX]

[DISPLAY Q111 IF Q107 = 1]

- 111. Did you install the pre-rinse spray valves that the [LOCATION] location?
  - 1. Yes 2. No 98. Don't know

```
[DISPLAY Q112 IF Q111=2]
```

112. In what city is the building where you installed the pre-rinse spray valves located in?

#### [TEXT BOX]

[DISPLAY Q113 IF Q107 = 2]

113. How many ENERGY STAR commercial fryers did you install?

#### [TEXT BOX]

[DISPLAY Q114 IF Q107 = 3]

- 114. How many ENERGY STAR commercial steam cookers did you install?
  - 1. Number of 3 pan steam cookers [NUMERIC]
  - 2. Number of 4 pan steam cookers [NUMERIC]
  - 3. Number of 5 pan steam cookers [NUMERIC]
  - 4. Number of 6 pan steam cookers [NUMERIC]
  - 98. Don't know

[DISPLAY Q115 IF Q107 = 4]

115. How many ENERGY STAR hot food holding cabinets did you install?

[TEXT BOX]

[DISPLAY Q116 IF Q107 = 5]

116. How many ENERGY STAR commercial griddles did you install?

# [TEXT BOX]

[DISPLAY Q117 IF Q107 = 6]

117. How many ENERGY STAR commercial convection ovens did you install?

[TEXT BOX]

[DISPLAY Q118 IF Q107 = 7]

118. How many ENERGY STAR commercial combination ovens did you install?

#### [TEXT BOX]

[DISPLAY Q119 IF Q39= 1 AND Q107=1-8]

119. How important was your experience with the program in your decision to install this kitchen equipment?

[SCALE 0 "Not at all important" - 10 "Very important"]98. Don't know

- [DISPLAY Q120 IF Q39= 1 AND Q107=1-8]
- 120. If you had NOT participated in the program, how likely is it that your organization would still have installed this kitchen equipment?

[SCALE 0 "Definitely would not have installed" - 10 "Definitely would have installed"

98. Don't know

- [DISPLAY Q121 IF [Q119=0,1,2,3 AND Q120=0,1,2,3] OR [Q119=8,9,10 AND Q120=8,9,10]]
- 121. You scored the importance of your program experience to your decision to implement energy efficient kitchen equipment with [Q119 RESPONSE ] out of 10 possible points. You ALSO scored the likelihood of implementing energy efficient kitchen equipment if your organization had not participated in the program with [Q120 RESPONSE] out of 10 possible points.

Can you please explain the role the program made in your decision to implement this measure?

# [TEXT BOX]

#### CUSTOMER SATISFACTION [DO NOT DISPLAY HEADING]

- 122. Not including any contractors that you hired, in the course of doing this project did you have any interactions with program staff about questions or concerns that you had?
  - 1. Yes
  - 2. No
  - 98. (Don't know)
- 123. Using the scale below, please rate how dissatisfied or satisfied you are with each of the following ....

# [SCALE: 1 = 1 (Very dissatisfied), 2 = 2, 3 = 3, 4 = 4, 5 = 5 (Very satisfied), 98 = Don't know]

For each:

#### [A AND B FIRST, RANDOMIZE C - M, ASK N LAST]

- a. [DISPLAY IF Q122 = 1] How long it took program staff to address your questions or concerns
- b. [DISPLAY IF Q122 = 1] How thoroughly they addressed your questions or concerns
- c. The steps you had to take to get through the program
- d. The amount of time it took to get your rebate or incentive
- e. The range of equipment that qualifies for incentives
- f. The program overall

# [DISPLAY Q124 IF ANY IN Q122 < 3]

- 124. Why were you dissatisfied with those parts of the program you mentioned?
  - 1. [OPEN]
- 125. If you could change one thing about the program, what would it be?
  - 1. [OPEN]
- 126. Using the same scale, how dissatisfied or satisfied are you with I&M as your electricity service provider?

# [SCALE: 1 = 1 (Very dissatisfied), 2 = 2, 3 = 3, 4 = 4, 5 = 5 (Very satisfied), 98 = Don't know]

#### FIRMOGRAPHIC [DO NOT DISPLAY]

127. Does your organization own or occupy, own and rent to someone else, or rent the facility where the project(s) took place?

- 1. Own and occupy
- 2. Own and rent to someone else
- 3. Rent
- 98. Don't know
- 128. Do you have any other comments that you would like to relay to I&M about energy efficiency in the commercial and industrial sector or about their programs?

# 4. C&I Participant Survey Results

Q1 - Our records indicate that you are the main contact for the [Field-FR\_MEAS1] project completed at [Field-LOCATION]. Were you involved in the decision to complete this project?

| # | Answer | %       | Count |
|---|--------|---------|-------|
| 1 | Yes    | 100.00% | 17    |
| 2 | No     | 0.00%   | 0     |
|   | Total  | 100%    | 17    |

# Q8 - Does your company have any of the following policies or procedures in place at [Field-LOCATION]?

| # | Question                                                                                         | Yes    |    | No     |    | Don't<br>know |   | Total |
|---|--------------------------------------------------------------------------------------------------|--------|----|--------|----|---------------|---|-------|
| 1 | A person or persons responsible for monitoring or managing energy usage                          | 70.59% | 12 | 29.41% | 5  | 0.00%         | 0 | 17    |
| 2 | Defined energy savings goals                                                                     | 52.94% | 9  | 41.18% | 7  | 5.88%         | 1 | 17    |
| 3 | A specific policy requiring that energy<br>efficiency be considered when purchasing<br>equipment | 52.94% | 9  | 47.06% | 8  | 0.00%         | 0 | 17    |
| 4 | Carbon reduction goals                                                                           | 29.41% | 5  | 64.71% | 11 | 5.88%         | 1 | 17    |

# Q9 - How did you FIRST learn about Indiana Michigan Power's incentives for efficient equipment upgrades?

| #  | Answer                                                           | %      | Count |
|----|------------------------------------------------------------------|--------|-------|
| 1  | From a Trade Ally/contractor/equipment vendor/ energy consultant | 17.65% | 3     |
| 2  | From an Indiana Michigan Power Account Representative            | 5.88%  | 1     |
| 3  | From a program representative                                    | 5.88%  | 1     |
| 4  | From an internet search                                          | 5.88%  | 1     |
| 5  | At an event/trade show                                           | 0.00%  | 0     |
| 6  | Received an email blast or electronic newsletter                 | 5.88%  | 1     |
| 7  | Received an informational brochure                               | 5.88%  | 1     |
| 8  | From a program sponsored webinar                                 | 0.00%  | 0     |
| 9  | From Indiana Michigan's website                                  | 5.88%  | 1     |
| 10 | Friends or colleagues                                            | 17.65% | 3     |
| 11 | Some other way (please explain)                                  | 29.41% | 5     |
| 98 | Don't know                                                       | 0.00%  | 0     |
|    | Total                                                            | 100%   | 17    |

# Q10 - When your contractor first approached you about the program, did you have any concerns about participating or was it an easy decision?

| #  | Answer                  | %     | Count |
|----|-------------------------|-------|-------|
| 1  | I had some concerns     | 0.00% | 0     |
| 2  | It was an easy decision | 0.00% | 0     |
| 98 | Don't know              | 0.00% | 0     |
|    | Total                   |       | 0     |

# Q11 - What were your concerns?

| #  | Answer                        | %     | Count |
|----|-------------------------------|-------|-------|
| 1  | Upfront costs                 | 0.00% | 0     |
| 2  | Time for return on investment | 0.00% | 0     |
| 3  | Performance of new equipment  | 0.00% | 0     |
| 4  | Business disruption           | 0.00% | 0     |
| 5  | Legitimacy of the offer       | 0.00% | 0     |
| 6  | Other: Specify                | 0.00% | 0     |
| 98 | Don't know                    | 0.00% | 0     |
|    | Total                         |       | 0     |

# Q13 - Using the scale below, please indicate how much you agree or disagree with the following statements regarding your experience with [Field-TRADE%20ALLY%20NAME]:

| # | Question                                                                   | Complete<br>ly<br>disagree1 |   | 2         |   | 3         |   | 4         |   | Complete<br>ly agree5 |   | Don't<br>kno<br>w |   | Tot<br>al |
|---|----------------------------------------------------------------------------|-----------------------------|---|-----------|---|-----------|---|-----------|---|-----------------------|---|-------------------|---|-----------|
| 1 | My contractor<br>was<br>professional                                       | 0.00%                       | 0 | 0.00<br>% | 0 | 0.00<br>% | 0 | 0.00<br>% | 0 | 0.00%                 | 0 | 0.00<br>%         | 0 | 0         |
| 2 | My<br>contractor's<br>recommendati<br>ons made<br>sense for my<br>business | 0.00%                       | 0 | 0.00 %    | 0 | 0.00 %    | 0 | 0.00<br>% | 0 | 0.00%                 | 0 | 0.00<br>%         | 0 | 0         |
| 3 | My contractor<br>could answer<br>most of my<br>questions                   | 0.00%                       | 0 | 0.00<br>% | 0 | 0.00<br>% | 0 | 0.00<br>% | 0 | 0.00%                 | 0 | 0.00<br>%         | 0 | 0         |
| 4 | I would<br>recommend<br>my contractor<br>as a contractor<br>to consider    | 0.00%                       | 0 | 0.00<br>% | 0 | 0.00<br>% | 0 | 0.00<br>% | 0 | 0.00%                 | 0 | 0.00<br>%         | 0 | 0         |

Q15 - Which of the following people worked on completing your application for program incentives (including gathering required documentation)?

| # | Answer                         | %      | Count |
|---|--------------------------------|--------|-------|
| 1 | Yourself                       | 58.82% | 10    |
| 2 | Another member of your company | 5.88%  | 1     |
| 3 | A contractor                   | 70.59% | 12    |
| 4 | An equipment vendor            | 23.53% | 4     |
| 5 | A designer or architect        | 0.00%  | 0     |
|   | Total                          | 100%   | 17    |

# Q16 - Using a 5-point scale, where 1 means "completely unacceptable" and 5 means "completely acceptable," how would you rate ...

| # | Question                                                                                                 | Complet<br>ely<br>unaccept<br>able1 |   | 2         |   | 3          |   | 4          |   | Comple<br>tely<br>accepta<br>ble5 |   | Don'<br>t<br>kno<br>w |   | Not<br>applic<br>able |   | Tot<br>al |
|---|----------------------------------------------------------------------------------------------------------|-------------------------------------|---|-----------|---|------------|---|------------|---|-----------------------------------|---|-----------------------|---|-----------------------|---|-----------|
| 1 | the ease<br>of finding<br>the<br>applicatio<br>n on<br>Indiana<br>Michigan<br>Power's<br>website         | 0.00%                               | 0 | 0.0<br>0% | 0 | 0.00 %     | 0 | 20.0<br>0% | 2 | 50.00%                            | 5 | 20.0<br>0%            | 2 | 10.00<br>%            | 1 | 10        |
| 2 | the ease<br>of using<br>the<br>applicatio<br>n portal<br>on<br>Indiana<br>Michigan<br>Power's<br>website | 0.00%                               | 0 | 0.0<br>0% | 0 | 0.00 %     | 0 | 20.0<br>0% | 2 | 50.00%                            | 5 | 20.0<br>0%            | 2 | 10.00<br>%            | 1 | 10        |
| 3 | the time<br>it took to<br>approve<br>the<br>applicatio<br>n                                              | 0.00%                               | 0 | 0.0<br>0% | 0 | 0.00<br>%  | 0 | 10.0<br>0% | 1 | 70.00%                            | 7 | 20.0<br>0%            | 2 | 0.00%                 | 0 | 10        |
| 4 | the<br>clarity of<br>informati<br>on on<br>how to<br>complete<br>the<br>applicatio<br>n                  | 0.00%                               | 0 | 0.0<br>0% | 0 | 10.0<br>0% | 1 | 20.0<br>0% | 2 | 50.00%                            | 5 | 20.0<br>0%            | 2 | 0.00%                 | 0 | 10        |
| 5 | the effort<br>required<br>to<br>provide<br>required                                                      | 0.00%                               | 0 | 0.0<br>0% | 0 | 0.00<br>%  | 0 | 10.0<br>0% | 1 | 70.00%                            | 7 | 20.0<br>0%            | 2 | 0.00%                 | 0 | 10        |

|   | invoices<br>or other<br>supportin<br>g<br>document<br>ation |       |   |           |   |           |   |            |   |        |   |            |   |       |   |    |
|---|-------------------------------------------------------------|-------|---|-----------|---|-----------|---|------------|---|--------|---|------------|---|-------|---|----|
| 6 | the<br>overall<br>applicatio<br>n process                   | 0.00% | 0 | 0.0<br>0% | 0 | 0.00<br>% | 0 | 20.0<br>0% | 2 | 60.00% | 6 | 20.0<br>0% | 2 | 0.00% | 0 | 10 |

# Q18 - Did you have a clear sense of whom you could go to for assistance with the application process?

| #  | Answer     | %      | Count |
|----|------------|--------|-------|
| 1  | Yes        | 90.00% | 9     |
| 2  | No         | 10.00% | 1     |
| 98 | Don't know | 0.00%  | 0     |
|    | Total      | 100%   | 10    |

# Q19 - Howlong did you have to wait for the equipment to be installed after the onsiteassessment was perf

| #  | Answer                                   | %     | Count |
|----|------------------------------------------|-------|-------|
| 1  | Less than 1 week                         | 0.00% | 0     |
| 2  | 1-2 weeks                                | 0.00% | 0     |
| 3  | 3-4 weeks                                | 0.00% | 0     |
| 4  | 5-6 weeks                                | 0.00% | 0     |
| 5  | More than 6 weeks                        | 0.00% | 0     |
| 6  | All equipment was installed the same day | 0.00% | 0     |
| 98 | Don't know                               | 0.00% | 0     |
|    | Total                                    |       | 0     |

## Q20 - Who installed your program-qualified equipment or efficiency upgrades? Was it...

| #  | Answer                                                                           | %      | Count |
|----|----------------------------------------------------------------------------------|--------|-------|
| 1  | Your own staff                                                                   | 17.65% | 3     |
| 2  | A contractor you've worked with before                                           | 52.94% | 9     |
| 3  | A contractor recommended by the Indiana Michigan program (registered Trade Ally) | 11.76% | 2     |
| 4  | A new contractor that someone else recommended                                   | 17.65% | 3     |
| 5  | Someone else (Please specify)                                                    | 0.00%  | 0     |
| 98 | Don't know                                                                       | 0.00%  | 0     |
|    | Total                                                                            | 100%   | 17    |

### Q21 - How did the incentive amount that you received compare to what you expected when you submitted your application? Would you say...

| #  | Answer                           | %      | Count |
|----|----------------------------------|--------|-------|
| 1  | It was much less                 | 5.88%  | 1     |
| 2  | It was somewhat less             | 11.76% | 2     |
| 3  | It was about the amount expected | 58.82% | 10    |
| 4  | It was somewhat more             | 11.76% | 2     |
| 5  | It was much more                 | 0.00%  | 0     |
| 98 | Don't know                       | 11.76% | 2     |
|    | Total                            | 100%   | 17    |

| #  | Answer                           | %     | Count |
|----|----------------------------------|-------|-------|
| 1  | It was much less                 | 0.00% | 0     |
| 2  | It was somewhat less             | 0.00% | 0     |
| 3  | It was about the amount expected | 0.00% | 0     |
| 4  | It was somewhat more             | 0.00% | 0     |
| 5  | It was much more                 | 0.00% | 0     |
| 98 | Don't know                       | 0.00% | 0     |
|    | Total                            |       | 0     |

### Q22 - How did the project cost compare to what you expected?

# Q23 - Has your organization purchased any significant energy efficient equipment in the last three years without applying for a financial incentive through an energy efficiency program at [Field-LOCATION]?

| #  | Answer                                                                                              | %      | Count |
|----|-----------------------------------------------------------------------------------------------------|--------|-------|
| 1  | Yes. Our organization purchased energy efficient equipment but did not apply for incentive.         | 23.53% | 4     |
| 2  | No. Our organization purchased significant energy efficient equipment and applied for an incentive. | 29.41% | 5     |
| 3  | No significant energy efficient equipment was purchased by our organization.                        | 17.65% | 3     |
| 98 | Don't know                                                                                          | 29.41% | 5     |
|    | Total                                                                                               | 100%   | 17    |

Q24 - Which of the following financial methods, if any, does your organization typically use to evaluate energy efficiency improvements? (Select all that apply.)

| #  | Answer                    | %      | Count |
|----|---------------------------|--------|-------|
| 1  | Initial Cost              | 44.44% | 4     |
| 2  | Simple payback            | 88.89% | 8     |
| 3  | Internal rate of return   | 44.44% | 4     |
| 4  | Life cycle cost           | 33.33% | 3     |
| 5  | We don't use any of these | 0.00%  | 0     |
| 98 | Don't know                | 0.00%  | 0     |
|    | Total                     | 100%   | 9     |

Q25 - What payback period do you typically require to approve an efficiency project?

What payback period do you typically require to approve an efficiency project?

| 2 years        |  |  |  |
|----------------|--|--|--|
| 3 years        |  |  |  |
| 2 years        |  |  |  |
| A year or less |  |  |  |
| 2 yrs          |  |  |  |
| 4-5 years      |  |  |  |

Depending on the scope of the project it could be up to 10 years.

### Q26 - What internal rate of return do you typically use to approve an efficiency project?

What internal rate of return do you typically use to approve an efficiency project?

How long it will take to pay for itself

24 months

15% - 20%

3 - 5 years

### Q27 - Before participating in the [Field-PROGRAM\_NAME] Program, had you implemented any equipment or measure similar to the [Field-FR\_MEAS1] [Field-INSTALLED\_FR1] at [Field-LOCATION]?

| #  | Answer     | %      | Count |
|----|------------|--------|-------|
| 1  | Yes        | 47.06% | 8     |
| 2  | No         | 47.06% | 8     |
| 98 | Don't know | 5.88%  | 1     |
|    | Total      | 100%   | 17    |

Q28 - When did you first learn about I&M's energy efficiency programs? Was it BEFORE or AFTER you finalized the specifications of your [Field-FR\_MEAS1] project, including the efficiency level and the scope of the project?

| #  | Answer     | %      | Count |
|----|------------|--------|-------|
| 1  | Before     | 64.71% | 11    |
| 2  | After      | 17.65% | 3     |
| 98 | Don't know | 17.65% | 3     |
|    | Total      | 100%   | 17    |

### Q29 - Did you have plans to [Field-INSTALL\_FR1] the [Field-FR\_MEAS1] at [Field-LOCATION] before participating in the program?

| #  | Answer     | %      | Count |
|----|------------|--------|-------|
| 1  | Yes        | 47.06% | 8     |
| 2  | No         | 52.94% | 9     |
| 98 | Don't know | 0.00%  | 0     |
|    | Total      | 100%   | 17    |

## Q30 - Would you have completed the [Field-FR\_MEAS1] project even if you had not participated in the program?

| #  | Answer     | %      | Count |
|----|------------|--------|-------|
| 1  | Yes        | 64.71% | 11    |
| 2  | No         | 29.41% | 5     |
| 98 | Don't know | 5.88%  | 1     |
|    | Total      | 100%   | 17    |

### Q31 - Did you have experience with I&M's incentive program before completing the [Field-FR\_MEAS1] project?

| #  | Answer     | %      | Count |
|----|------------|--------|-------|
| 1  | Yes        | 41.18% | 7     |
| 2  | No         | 58.82% | 10    |
| 98 | Don't know | 0.00%  | 0     |
|    | Total      | 100%   | 17    |

#### Q32 - How important was your previous experience with Indiana-Michiganoffered programs in making your decision to [Field-INSTALL\_FR1] the [Field-FR\_MEAS1] at [Field-LOCATION]?

| #  | Answer                  | %      | Count |
|----|-------------------------|--------|-------|
| 1  | Very important          | 28.57% | 2     |
| 2  | Somewhat important      | 71.43% | 5     |
| 3  | Only slightly important | 0.00%  | 0     |
| 4  | Not at all important    | 0.00%  | 0     |
| 98 | Don't know              | 0.00%  | 0     |
|    | Total                   | 100%   | 7     |

# Q33 - Did an [Field-PROGRAM\_NAME] Program representative or other I&M representative recommend that you [Field-INSTALL\_FR1] the [Field-FR\_MEAS1] at [Field-LOCATION]?

| #  | Answer     | %      | Count |
|----|------------|--------|-------|
| 1  | Yes        | 35.29% | 6     |
| 2  | No         | 58.82% | 10    |
| 98 | Don't know | 5.88%  | 1     |
|    | Total      | 100%   | 17    |

# Q34 - If the [Field-PROGRAM\_NAME] program representative had not recommended [Field-INSTALLING\_FR1] the [Field-FR\_MEAS1], how likely is it that you would have [Field-INSTALLED\_FR1] it anyway?

| #  | Answer                    | %      | Count |
|----|---------------------------|--------|-------|
| 1  | Definitely would have     | 16.67% | 1     |
| 2  | Probably would have       | 16.67% | 1     |
| 3  | Probably would not have   | 50.00% | 3     |
| 4  | Definitely would not have | 0.00%  | 0     |
| 98 | Don't know                | 16.67% | 1     |
|    | Total                     | 100%   | 6     |

Q35 - If the [Field-PROGRAM\_NAME] program contractor that provided the energy assessment of your facility had not recommended [Field-INSTALLING\_FR1] the [Field-FR\_MEAS1], how likely is it that you would have [Field-INSTALLED\_FR1] it anyway?

| #  | Answer                    | %     | Count |
|----|---------------------------|-------|-------|
| 1  | Definitely would have     | 0.00% | 0     |
| 2  | Probably would have       | 0.00% | 0     |
| 3  | Probably would not have   | 0.00% | 0     |
| 4  | Definitely would not have | 0.00% | 0     |
| 98 | Don't know                | 0.00% | 0     |
|    | Total                     |       | 0     |

Q36 - Would your organization have been financially able to [Field-INSTALL\_FR1] the [Field-FR\_MEAS1] at [Field-LOCATION] without the financial incentive from the program?

| #  | Answer     | %      | Count |
|----|------------|--------|-------|
| 1  | Yes        | 76.47% | 13    |
| 2  | No         | 17.65% | 3     |
| 98 | Don't know | 5.88%  | 1     |
|    | Total      | 100%   | 17    |

Q37 - To confirm, your organization would NOT have allocated the funds to complete a similar energy saving project if the program incentive was not available. Is that correct?

| #  | Answer     | %      | Count |
|----|------------|--------|-------|
| 1  | Yes        | 33.33% | 1     |
| 2  | No         | 66.67% | 2     |
| 98 | Don't know | 0.00%  | 0     |
|    | Total      | 100%   | 3     |

### Q38 - If the financial incentive from the [Field-PROGRAM\_NAME] Program had not been available, how likely is it that you would have [Field-INSTALLED\_FR1] the [Field-FR\_MEAS1] at [Field-LOCATION] anyway?

| #  | Answer                                                | %      | Count |
|----|-------------------------------------------------------|--------|-------|
| 1  | Definitely would have \${e://Field/INSTALLED_FR1}     | 35.29% | 6     |
| 2  | Probably would have \${e://Field/INSTALLED_FR1}       | 17.65% | 3     |
| 3  | Probably would not have \${e://Field/INSTALLED_FR1}   | 23.53% | 4     |
| 4  | Definitely would not have \${e://Field/INSTALLED_FR1} | 0.00%  | 0     |
| 98 | Don't know                                            | 23.53% | 4     |
|    | Total                                                 | 100%   | 17    |

## Q40 - Did you purchase and install more [Field-FR\_MEAS1] than you otherwise would have without the program?

| #  | Answer                                                       | %      | Count |
|----|--------------------------------------------------------------|--------|-------|
| 1  | Yes                                                          | 47.06% | 8     |
| 2  | No, program did not affect quantity purchased and installed. | 47.06% | 8     |
| 98 | Don't know                                                   | 5.88%  | 1     |
|    | Total                                                        | 100%   | 17    |

### Q41 - Did you choose equipment that was more energy efficient than you would have chosen because of the program?

| #  | Answer                                                               | %      | Count |
|----|----------------------------------------------------------------------|--------|-------|
| 1  | Yes                                                                  | 33.33% | 4     |
| 2  | No, program did not affect level of efficiency chosen for equipment. | 66.67% | 8     |
| 98 | Don't know                                                           | 0.00%  | 0     |
|    | Total                                                                | 100%   | 12    |

### Q42 - What kind of equipment, if any, would you have installed if the program was not available?

| #  | Answer         | %      | Count |
|----|----------------|--------|-------|
| 1  | Please specify | 66.67% | 2     |
| 98 | Don't know     | 33.33% | 1     |
|    | Total          | 100%   | 3     |

## Q43 - Did you [Field-INSTALL\_FR1] the [Field-FR\_MEAS1] earlier than you otherwise would have without the program?

| #  | Answer                                        | %      | Count |
|----|-----------------------------------------------|--------|-------|
| 1  | Yes                                           | 31.25% | 5     |
| 2  | No, program did not affect timing of project. | 68.75% | 11    |
| 98 | Don't know                                    | 0.00%  | 0     |
|    | Total                                         | 100%   | 16    |

### Q44 - When would you otherwise have completed the project?

| #  | Answer                   | %      | Count |
|----|--------------------------|--------|-------|
| 1  | Less than 6 months later | 0.00%  | 0     |
| 2  | 6-12 months later        | 20.00% | 1     |
| 3  | 1-2 years later          | 40.00% | 2     |
| 4  | 3-5 years later          | 40.00% | 2     |
| 5  | More than 5 years later  | 0.00%  | 0     |
| 98 | Don't know               | 0.00%  | 0     |
|    | Total                    | 100%   | 5     |

# Q158 - Not including any contractors that you hired, in the course of doing this project did you have any interactions with program staff about questions or concerns that you had?

| #  | Answer     | %      | Count |
|----|------------|--------|-------|
| 1  | Yes        | 25.00% | 4     |
| 2  | No         | 68.75% | 11    |
| 98 | Don't know | 6.25%  | 1     |
|    | Total      | 100%   | 16    |

## Q159 - Using the scale below, please rate how dissatisfied or satisfied you are with each of the following ....

| # | Question                                                                                     | Very<br>dissatisfied<br>1 |   | 2         |   | 3         |   | 4          |   | Very<br>satisfied<br>5 |        | Don't<br>know |   | Tota<br>1 |
|---|----------------------------------------------------------------------------------------------|---------------------------|---|-----------|---|-----------|---|------------|---|------------------------|--------|---------------|---|-----------|
| 1 | How long<br>it took<br>program<br>staff to<br>address<br>your<br>questions<br>or<br>concerns | 0.00%                     | 0 | 0.00<br>% | 0 | 0.00 %    | 0 | 25.00<br>% | 1 | 75.00%                 | 3      | 0.00 %        | 0 | 4         |
| 2 | How<br>thoroughl<br>y they<br>addressed<br>your<br>questions<br>or<br>concerns               | 0.00%                     | 0 | 0.00<br>% | 0 | 0.00 %    | 0 | 0.00%      | 0 | 100.00<br>%            | 4      | 0.00 %        | 0 | 4         |
| 6 | The<br>quality of<br>the<br>installatio<br>n                                                 | 0.00%                     | 0 | 7.69<br>% | 1 | 0.00<br>% | 0 | 7.69%      | 1 | 84.62%                 | 1<br>1 | 0.00<br>%     | 0 | 13        |
| 7 | The steps<br>you had<br>to take to<br>get<br>through<br>the<br>program                       | 0.00%                     | 0 | 0.00<br>% | 0 | 6.25<br>% | 1 | 25.00<br>% | 4 | 68.75%                 | 1      | 0.00 %        | 0 | 16        |
| 8 | The<br>amount<br>of time it<br>took to<br>get your<br>rebate or<br>incent                    | 0.00%                     | 0 | 6.25<br>% | 1 | 6.25<br>% | 1 | 12.50<br>% | 2 | 68.75%                 | 1      | 6.25<br>%     | 1 | 16        |
| 9 | The<br>range of<br>equipmen<br>t that                                                        | 0.00%                     | 0 | 6.25<br>% | 1 | 0.00<br>% | 0 | 50.00<br>% | 8 | 43.75%                 | 7      | 0.00<br>%     | 0 | 16        |

|        | qualifies<br>for<br>incentive<br>s |       |   |           |   |           |   |            |   |        |        |           |   |    |
|--------|------------------------------------|-------|---|-----------|---|-----------|---|------------|---|--------|--------|-----------|---|----|
| 1<br>4 | The<br>program<br>overall          | 0.00% | 0 | 6.25<br>% | 1 | 0.00<br>% | 0 | 12.50<br>% | 2 | 81.25% | 1<br>3 | 0.00<br>% | 0 | 16 |

## Q162 - Using the same scale, how dissatisfied or satisfied are you with I&M as your electricity service provider?

| #  | Answer             | %      | Count |
|----|--------------------|--------|-------|
| 1  | Very dissatisfied1 | 0.00%  | 0     |
| 2  | 2                  | 6.25%  | 1     |
| 3  | 3                  | 6.25%  | 1     |
| 4  | 4                  | 31.25% | 5     |
| 5  | Very satisfied5    | 56.25% | 9     |
| 98 | Don't know         | 0.00%  | 0     |
|    | Total              | 100%   | 16    |

### Q163 - Does your organization own or occupy, own and rent to someone else, or rent the facility where the project(s) took place?

| #  | Answer                       | %      | Count |
|----|------------------------------|--------|-------|
| 1  | Own and occupy               | 93.75% | 15    |
| 2  | Own and rent to someone else | 0.00%  | 0     |
| 3  | Rent                         | 6.25%  | 1     |
| 98 | Don't know                   | 0.00%  | 0     |
|    | Total                        | 100%   | 16    |